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ABSTRACT

This investigation explores the effects of chordwise forces and
deformations and steady-state deformation due to 1lift on the static
and dynamic aervelastic stability of a uniform cantilever wing. Results
of thils analysis are believed to have practical applications for high-
performance sailplanes and certain RPV's.

The airfoil cross section is assumed to be symmetric and camber
bending is neglected. Motions in vertical bending, fore-and;aft
bending, and rorsion are coansidered. A differential equation model is
developed, which includes the nonlinear elastic bending-torsion coupling
that accompanies even moderate deflections. A 1ineari;ed expansion in
small time-dependent perturbation deflections is made about a steady
flight condition. The stability dzrerminant of the linearized system
then contains coefficients that depend on steady displacements. Loads
derived from two-dimensional incomprassible aerodynamic theory are used
to obtain the majority of the results, but cases using three-dimensional
subsonic compressible theory are zlso studied.

The stability analysis is carried out in terms of the dynamically
uncoupled natural modes of vibration of the uniform cantilever. Dynamic
stabllity in the case of incompressible strip-theory airloads is deter-

mined in two ways. One is the "V-g method” familiar to aercelasticians.

When steady deformations are present this method requires an iterative qﬁ
a Sectim

matching of flutter speeds with estimated speed. The second approach ! E;

involves determination of the complex elgenvalues of the aerocelastic et e

modes at any desired flight condition. The aerodynamic loads are

Dist, AVAIL_andof SPECIAL
—

iii h

ISTREUTIOR AYALAREY CHEES |

e o RS T et ke L el




expressed 1a terms of the generalized Theodorsen function: eigenvalues
of the eeroelasti: system ara located with a gradient search technique.

The sffsct of steady drag on {lutter of nonlifting wings using
incompressible strlp-theory is studied and shown to corrslate with
previously knewn results. Next, the influence of steady lifting
deformacions on flutter is investigated, and flutter modes are found
that involve fore-and-aft bending motions. The significance of unsteady
leading edge suction forces, which are predicted by the two-dimensional
incompressible aerodynamic theory, is then examined. Two idealized
examples based upon existing sailplanes are analyzed.

Steady drag loads lower the flutter speed for larger aspect ratios
but increase it for aspect ratics less than a certain value. Divergence
speed is more sensitive to steady drag, and for very high aspect ratio
wings 1t can fall below the bending-torsion flutter speed. Steady
deformatiorns due to lifr always decrease the fluiter speed by an amount
dependent upon the aspect raijo and the fore-and-aft bending stifiness.
Leading~edge suction forces increase flutter speed.

Three-dimensional steady and unsteady airloads are introduced into
the V-g flutter analysis scheme, and for a Mach number of zero the role
of steady lifting deformations and unsteady leading-edge suction forces
is more accurately determined. The behavior predicted using strip
theory loads is again observed, and the suction forces are confirmed to
contribute a significant stabilizing effect. Further czlculations using
high subsonic Mach numbers reveal only mild effects due to compressi-

bility (disregarding unsteady chordwise loads of viscous origin).
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Chapter I

TNTRODUCTION

Aerodynamic loads and deformations parallel to the chord are
usually neglected during studies of aeroelasric srabfliry of lifting
surfaces. Furthermore, dynamic stability is usually analyzed:;ithout
regard for the influence of steady deformations due to steady-state
life.

Very little literature exists which treats chordwise fﬂrces and
bending in an asroelastiz: analyvsis, A subst%ntinl study oﬁ the cffects
of drzg ivsds on diverg:nce of a cantilever wing is made 4y Petrre (Ref.
2, pp. 449-487). Here it is clearlyv demonstrated that vhe interaction
of drag with bending deformations due to lifting loads can signifi-
cantly reduce divernence speeds. Goetz (Ref. 17) caasidered this same
drag-bending deformatfion divergence mechanism, specialfzed to the case
of a rigid 1iftiag surface at the end of a beamrod. This work involvad
supersonic flow past a surface having a blunt leading edge, and the
resulting sizeable drag forces caused a significant reduction of the
classical divergence speed.

One example of an aeroelastic study in which chordwise deformations
of & straight cantilever wing are accoun:zed for is the work in the area
of tilting proproter aircraft by Wavne Johnson. The cruising flight
condition (Ref. 27) is modeled us;ng a proprator with axial flow mounted
at the tip of a cantilever wing. The additional degrees of freedom
associated wirth the individual elastic rotor blades and the aerodvnamic
and inartial effects of the proprotor result in a much more complex and

spechialized aeroelastic analysis than is considered here.



The effect which steady chordwise forces c¢an have upon dynamic
stability was explored by Petre (Ref. 3) and Petre and Ashley {(Ref. 1)
using rwo-dimensional incompressible unsteady lifting airloads. The
latter work presents extensive calculations regarding the effect of
steady drag on bending-torsion flutter of a uniform cantilever wing.

It serves as the starting point for the work pursued in this thesis.
The objectives of rhis thesis are as follows:

i. To check and interpret the predicted effect of steady drag
on the flutter behavior of a nonlifeing wing discovered in
Ref. 1, using a modal approach instead of a collocation
approach.

2. To generalize the equations of motion to include consistently
fore-and-aft bending motions, adequately accounting for the
elasric coupling among the three degrees of freedom.

3. To invlude steady-state litting deformations in the dynamic
stability analysis by considering small time-dependent per-
turbation deflections about a sready displacement solution.

4. Yo allow for unsteady leading-edpge-suction forces in the
chordwise direction predicted by two-dimensional incompressible
unsteady potential flow thaory.

5. To improve the representation of both steadv and unsteady air-
loads by use of a three-dimensional subsonic kernel function
program, from which leading-edge suction and induced drag can
also be obtained.

ltems 2, 3, and 4 are interrelated and topether represent a consis-

tent extension over previous research in the modeling of the phvsical



svstem. For example, when steadv lateral bending deforsatfions are
preésent, unsteadv chordwise loads can induce wisting =t fons which
significantly affect dvnamic stabilitv. The main purpose licre will
be to establish trends and gain fundamental Insight fato the tnfluence
of cherdwise forces and steady deformations. hopefully shedding light
on their importance in practical aerospace problems.

Certain assumptions are adhered te throughout this thesis, Since
the emphasis is upon working from the equations of metion in differen-
tial form in arder to include certafn nonlinear elastic soupling terms,
ir is convenient toe resrrict this spudy Lo straight cantilever wings
having mass and stiffness properties uniform with span. The wing i=s
taken to be a one-dimensional structure in rhe sense thar all deforma-
tions are described as functions of the spaawisce variable v . Camber
bending is neglected and the simple Euler-Bernoulli beam stress—-straln
assumptiens are used. The platform is rectaagular, and the steadv and
unsteady flow fields are alwavs assumed to be superposable: unsteady
loads are computed for the undeformed geometrv and applied teo the deformed
wing. Although these assumptions would be testrictive for the purpose
of modeling actual structures, thev are acceprable here since only rhe
telative influences of chordwise loads and steady deformations are of
interest.

In Chapter II a vertical-bending/torsion model basic to the svstem
of Ref. 1 is developed and modal equations are derived to permit flutter
calculations for zero steadv lift with steady drag included. Assumed
mode solutions are then compared with results of Ref. 1. A linear
steady~state version of the modal equations is then examined to allow

computation of divergence speeds as affected by steadv drag.



In Chapter II1 a model central to this thesis is developed that
Includes vertical bending, cherdwise bending, and torsion. HNonlinear
steady angd linearized unsteady differenvtial equations are then deduced,
and they are analytically compared with the model in Chapter II.

In Chapter IV the modal forms of these steady and linearized
unsteady equatlons are set up to include lifting airloads deduced from
incompressible steady and unsteady strip-theory. A scheme based on the
so—called V- method of flutter analvsis is used to determine neutral
dvnamic stablliity conditions, and results are checked against thoge of
Chapter 11.

In Chapter ¥V a zeneralizarion to the case of arbitrary motion in
time {s presented through Laplacc transformation of the modal equations,
which requires Incomprexsible unsteady two-dimensional airloads valid
for non-periodic motions of the wing.

Adeterminant iteration procedure 18 used to determine the aero-
elastic eigenvalues for flight speeds above and below the flutter speed.
Firally, the effect of unsteady leading-edge suction forces predicted
bv incompressible strip theory is included in the linearized unsteady
stability svstem.

In Chapter VI all resulets for incompressible strip-theory airloads’
are assembled and systematically presented, concluding with two examples
based upon actual sailplanes.

In Chapter VII the flutter speed prediction scheme of Chapter IV
is modified to use three-dimensional subsonic steady and unsteady -
lifting airloads. Results are presented to indicate the effects of

three-dimensional aerodynamics, unsteady drag, and compressibility.
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In Chapter VIII the principal conclusions of {his thesis are

presented.
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Chapter 1II

DRAG EFTECTS ON FLUTTER AND DIVERGENCE;
DEFORMATION IN VERTICAL BENDING AND TORSTON ONLY

A, The Vertical Bending/Torsion Equations

In the Petre and Ashley work (Ref. 1) the effect of drag ou [lutter
of cantilever wings s studied assuming only vertical bending and
torsion about the elastlc axis. The equations are cast into [ntegral
form, and soluticuns are obtained by collocation of the integral cquatiouns
at ten stations across the span. Here we check the results of Ref. 1
using an entirely different, modal approach. The results also serve as
exanples with which to compare solutions found with the more general
system, developed in the following chapter, which includes chordwise
bending.

The differential equations of bending and torsion, as piven in
Ref. 1 and adapted to the present nolaticn and roordinate aystem (as

In Fig. 2-1), are

3 .. Aw 2w ¢ .
(2-1a) -'a—yz' [LIK 'i:?z] + m T3 - Se e La(w,l’))

;) 3¢ L 32w
(2-1b) 3; [GId 3;] - J 3T + se §EY‘+ ma(w,¢)
5w
- Mz 3;7 = 0




The quantity Mz is a function of ¥y given by

L
(2-2) L fy D(n) (n-y)dn

= -~ D 4[R-y]?

where it !s assumed that the running drag force D has constant magni-
tude across the span. Hz can be recognized as the total moment about
the vertical axis applied at station y by all drag acting outboard

of this station. Mean values of the twist and bending displacement

are assumed to be zero.

Equations {2-1) are linear and are coupled inertially by the third
term in ecach: these terms arise from the offset of the center of mass
of the zirfoil section from the elastic axis. A second coupling effect
is due entirely to drag, introduced through the terms contailning Mz .
All remaining terms in the equations represent the conventional elastic,
inertial, and unsteady lifting aerodynamic load contributions.

The manner in which the drag loads have been introduced into the
system is discussed by Petre (pp. 449-487, Ref. 2) and can be explained
by the following physically oriented argument. The drag coupling term
in the bending equation arises from the resultant bending moment mx(y)
applied at station y due to drag forces outboard of y . As shown in
Fig. 2-1, a drag force acting outboard of station y has a component
Dé(y) perpendicular to the airfoil's principal axis of vertical bending,

giving a resultant moment at vy about the principal direction of

Hal g’ -
mx(y) = ¢(y)D J;r (n=-yldn
= ¢(y)D L(R-y)?

- —Mz¢



The moment—-curvature relation for the beam,

33w x
3y EL

together with moment-shear equilibrium

3%m

x -—
W a(y)

(hetre q(y) 1is the positive-upward running load in the principal
direction of the section) allows the drag effect to be expressed in

equilibrium with the elastic term as

This is the same drag coupling term appearing in (2-1).

A similar derivation reveals the origin of the drag term in the
toraion equation. Looking at the front view of the wing (Fig. 2.2) one
can see that a drag load at n glves rise to a twisting moment at y

by acting through the moment arm given by distance e ,
aw 1
e = w(n - [w(y) + T 162 (n—y)_]
The resultant torque applied at station y by all drag forces acting
outboard is given by

_ 2 3w (v)
Ty(y) =D J;' fw(n) - w(y) - Sy (n-y)1dn

Differentiating with respect to y ,



dry(y) o o _ 3wy oy _ 3w 3w
dy D.l‘y ——:Ldy (n-y) 5y T3y | 9"

2
= - D 5o% -y

az
z 3

£

= M

%

Elastic equilibrium for a rod loaded with applied torsion Ty(y) 1is

given by

The drag coupling term of equation (2-1) can then be i{dentified in

the resulc

B, Solution By Assumed Modes

When structural dynamics problems yield solutions whose frequencies
are within the range of the structure's lowest normal mode natural
frequencies and the latter have a sufficiently sparse distribution,
modal analysis methods prove to be effective. Primary bending-torsion
flutter of cantilever wings, under study here, is a classic example in
aeroelasticity of such a2 system. Inclusion of steady drag effects
should have only a swall effect on the range of frequencies over which
flutter solutionse occur and, by this reasoning, should not adversely

affect the convergence of modal solutions. Petre in Ref. 1 expresses
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the opinicn that methods relying on the assumption of a few prescribed
deformation modes constrain the flutter mode ghape and should be avoided.
This opinion iz tested herein by actually studying modal convergence.
Solutions of (2-1) are sought using superposition of the dynami-
cally uncoupled natural modes of free vibration in bending and tcrsion
of a uniform cantilever beam. These assumed modes, with their relevant
propertles, are dascribed in Appendix A. Although not true normal modes
of the inertially-coupled structure, they can be considered as ‘'pseudo-

orthogonal” since integrals of the type

i -~

fom fw fw dy = 0 141
i 73

,félJf § dy =0 1¢3

lesd to uncoupled elastic behavior and hence a diagonal stiffness matrix
in the matrix eigenvalue problem. Use of the actual normal modes would
require that they be calculated for each wing configuration studied.
Since the assumed modes satisfy the nairuial boundary conditions at the
free end of the cantilever as well as the geometyric boundary conditions
at its clamped root, Galerkin's method can be applied to the differential
equations (Ref. 4, p. 218) to obtain the system in terms of modal
generalized coordinates.

To find the velocity for neutral stability {the flutter velocity),
the V-g method {p. 381, Ref. 3}, common in aerocelastic stability
analyses, in employed. With simple harmonic motion of frequency w
the unsteady, incompressible, strip-thecory lifting airloads are

expressible as [(4-123) and (4-124) of Ref. 5]

11



(2-3a) L (w.038) = - T p v? wdi- % + 1L, ~Cgta)1, 19de™™"
(2=3b) m (w,p3t) =0 p be mz{—[M -(Igtall ] )
- a" "' w w' b

DMy = () (Ly 1) + Opr)® 1 18de

where
e 1 - == C(k) Mw = 1
(2=4)
2 =3 _1
] [1 +2€(k)] - 77 CCk) My =8 " i

‘

Here C(k) 1s the familiar Theodorsen function of reduced frequency

. wh
=T

The drag coupling terms in (2-1) can be treated as applied loads
in dzveloping the modal equations, by defining total applied force and

moment in the bending and torsion eguations as
32
(2-5a) Fz(y,t) = L,(w.¢,¢t) - T (Mz¢)

{2-5b) m (y,t) =m {(w,p,t) - M 3w
! }7, a1|1 a"e'}?

Incorporation of artificial structural damping g by allowing a complex

elastic modulus produces the system

3w 3% hY
(2-6a) EL (+ig) 5% + n 577 - s ﬁ? = F_(y,8)
(2-6b) GI (1+1g) B 3 - J-§—$ + 8, 'ET = - m (y,t)
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Formal development of the modal equations begins with substitution
of the serles expansions for w and ¢ in terms of the assumed mode
shaps: functions and generalized coordinates. With the same number n
of bending and torsion modes always used, the system order will be 2n .
Generalized displacements are assumed to have simple harmonic time

dependence, giving

n
foe
(2-7a) wiy,t) = L £ (y)q_ e
i=1 Y4 w3
(2-7b) b(y,t) = I £, O otur
1=1 i i

Generalized displacements for bending modes have units of length, where
as for torsion they are dimensionless.

Galerkin's method involves substitution of (2-7) into the system
represented by (2-1), (2-2), (2-3), and (2-4) and then multiplication
of each term in the bending equation by fwj and each in the torsion
equation by f¢j ,» followed by integration across the half span. With

eimt cancelled the resulting system 1s

L, g -

(2-8a) EI_(1+ig) [ & £'9'" ¢ q dy~-m? [ I F_f dy
* =1 M1 My M1 ° 4a1 Vi ¥y Wy
+w’s {3 E f¢ f 9y, dy = fit %} F {$,wit)f dy

€0 41 %y M 9y e z ¥3
Q<ism
% 2 2 4
(2-8b) CI,(1+ig) f© T €' €, q, dy+J? J° T £, €, q, dy
d © ga1 91 %y 4y o ga1 by by Ty
2 g 0 1 .8
~wt s S L £ f, q, dy=-—= "m (d,wst)f dy
e oWy ¢j LA eimt o 1 de

]
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The generalized forces can be arranged in terms of dimensionless unit

generalized forces Q11 through the Ffollowing definitions:
‘ q

L 2,3 n “i n ilwt
(2-9a) JUF (¢,wit)E dy = Npw*b 'L} % Q -4+ L Q q e

oz wj =1 j,1 b 1=l i, 140 ¢i

q
n w N

L ey o TlE e fwt

(2-9b) &)my(¢,w.t)f¢jdy = Hlpw*h R[;§1Qj+“‘i 5 + 1§1Qj+“’i+“q¢1] e

The modal integral in the first term of (2-8a), integrated by parts

twice and with application of cantilever boundary conditions, yields

£

L SRR - I X e
%) fw1 ij dy = £ fwi fHj dy
=0 for 1 # ]

From Appendix A, the i=j term can be expressed in terms of the natural
frequency of the jth assumed bending mode by the substiturion
2 2 2 A .2 2
2= f v = =
(2-10) EL [ (f"j) dy = mu~ [ f, dy = mu 2

w o}

i 3 ]

Similarly, integrating the first term in (2-8b) by parts and introducing

the fiatural frequeuncy m¢ of the jth assumed torsion monde leads to

i

(2-11) GI, IR I% dy =

o fo, o, 0 RN

-y sz¢j£ d =3

Insertion of ¢2-%9), (2-10), and (2-11) intw (2-8) and further use

of modai orthogomality properties gives

14



C,
W iy s n
_ m 1. _n_ 1, e " 1
(2-12a) ﬁagz'(1+ﬁ8) TF; 5 TobZ 5+ bm Tipb i:1 ii q¢i
n q"i n
+ I Q=+ I Q 0
1=1 i B gy Theddn Ty
(1<3<n
I w
_ m__J d’% —mJ
SR A B S AT
s n R n b n
tom et LN *Ei 2 Qg —31'+ L Qun,itn B, =0
m b jay 11 =1 JH g=] TR0

where the bending equation has been divided through by Tpw?b*g

the torsion equation by Ipw®b“L .

and

Inertial coupling, a consequence

of nonorthogonality between bending and torsion assumed modes, produces

terms in the modal integrals

I

(2-13) 1§

1 - ~y g~
Sof (W, (¥)dy
3] wi ¢j

For now it is convenient to reference

torsion mode naturnl frequency m¢

1
(Appendix A) are
o - 21-1 2 GId
¢j 2 N
(2-14)
2=N£_]£.If_1.¥-
wj £* m

Ratlos that are useful are then

to the first assumed

Assumed mode natural frequencies



w W2 2

w _ EJII_ Elxb 3

mé 4 Gld!.z wh*
1

(2-15)

r—
i
'\1- G
[
—~
o]
L=
!
-
-~
™

The transcendental Nj are given in Appendix A for 1 < J < 5.
The equations can be nondimensionalized through the following
dimensionless parameters, chosen to be as consistent as possible with

Ref. 1 notation.

- __m = _8
M= ]'Ipb2 S = bin
(2-16)
E‘.bez 3
S I 1o F wb?

Prequency is nondimensionalized as in Ref, L by defining the frequency

parameter
GI
- = Z =
(2-17) Z = (1+g)0* = (1+ig)3§2u?

2
W
!
=7 o (e)

Substitution of (2-15), (2-16), and {2-17) intec (2-12) ylelds the modal

equations in a suitable form for computation.

) n Ay
(2-18a) M - N'TMPL 2)—d + £ q
i AT

Y
j.i b

n
+ I {mMsl

(1<31<m =1 M +_Qj'm}q¢i
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- v [ —k - M2(§-12
(2-18b) E { hslij + Qj+n‘i} g+ Demg 11 - FE5-10 Zl}q@

b

n
+ I

Uan, 14n e,
The flutter determinant, of ocrder 2n , results as a necsssarv condition
for a nontrivial solution and leads to a complex eigenvalue prodlem to
determine 2Z .

Next, the unit generalized forces QH mest be expresasd to allow

numerical computation. Combining (2-3), (2-4), and (2-7) into (2-9)

leads to
q
(2-19a) CMebt? (- L E £ (E () -t ey 4 /¥ (L - CeradL ] -
a Pb w °“i=1“1y”1y b‘y'o[q;'(a)w
P (NE, (Va, dy} + [ 3 12 v2he N¢ v)z 3 £ (y)a, ] -
el 1)
i= 1 ¢i “y ¢, o Iv° 2 4 9 oy
(1<3<n) ., m %W oo
£ (y)dy = lipw“b"8][ L Q —=4 LQ, . q.]l
v, S T A N M
; 4 L n qwi
(2-19b) Teb*w?{ [ (-M_ + Ogba)L 1 I £ (E, () 5 dy
i=1 Y 3
[M¢ - (%+a)(L¢+M ) + (+a)? L, ]l§1f¢i(y)f¢j(v)qm dy}
3 2,2 2. o qwi
1] 4 ———
+ J; L pv2b2 (L-y) CDE £ (y)fd> g~ ay
i=1 i i
qwi n
= Tow*b* ”jl"m 175 ¥ iilqj*-n,iﬂl qy |
After further reduction, with
2.2
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and carrying out remaining differentiations in y , (2-19) becomes:

%

n n
™ -~ 1 o 9 oyd .—i - .
(2-20a) iil{.,w fofwi(y)fwj (3)dv} = + 1El{[ L, + Ceradl ]
s DA e D S 1,, =~
- J;fd’i(y)fwj(y)dy + Sperl2 {)fcbi(y)fwj(y)dy -4 Q-9 -
(l<jz<n)
LE G, 1+ pa-pier Gre, Gal,
] i i i
n W, n
= L Q -+ L Q q
o1 3iTB T 0 Shidn o,
. 1
" ~ -
(2-20b) 151{-M“’ + Cera)L 1)) fwj (y)fqu (¥)dy
9 2 My om
+ T fp AN Py GaFFE+ T M- Cera) (L)
i i i=1

Ly 22 1 ~ I
+ (++a) L) SE, (YE, (¥)dylq
LAV ¢J. tbi

Here, integrals in the spanwise variable y have been non-
dimensionalized. Four different types of modal integrals are encountered,
including the Iij previously identified. The three new forms arise

from the drag coupling terms and are

Y _ 1 an2em o R
1 43 £ (1-y) fwi(y)f¢j(y)dy
(2) _ 1 ~ v ~ ~ ~
(2-21) Iij = £ (1—y)f¢i(y)fwj Fidy
(3) _ ;1. =2, - P
Iij = {)(l-y) f¢i(y)fwj(y)dy

18



The modal integrals in (2-13) and (2~21) were numerically computed to
twelve significant digits for 1 < i,j €5 .
Two additional dimensionlessparameters can be introduced, again

drawn from Ref. 1.

D
- = L 4 = e

The drag parameter C 1is defined as the applied steady sectional drag
coefficient divided by the sectional 1lift curve slope (20l for
incompresible strip theorv).

After (2-20), (2-21), and (2~22) are combined with orthogonal

modal integrals recognized, the unit generalized forces are found to be

Ry ,1 = JL, u=D
a (1#3)
_ c (2) (3)
Qj,i+n = - {L - ALW]Iij +? [21ij -4 Iij + Iij 1
(2-23) ﬁ
- _ c (D
Uyn,1 =~ W, - A dl  + 37 14
- 2 -
Qj_'_n.i_m %[M¢ - A(L¢ + M)+ AL ] (i=1)
Y i4j)
k (i+#]

The Qij depend only upon %k, &, and C . Actwal computation of the
Theodorsen function is accomplished by direct use of the ascending
power series of the modified Bessel functions Kb and Kl » as explained
in Appendix B.

Equations (2-4), (2-18), and (2-23) together supply the flutter

determinant for the VT system using assumed modes, given in matrix

19



form in (2-24). Solurions can be found using from one to five assumed
modes in each cof bending and torsion, and the maximum order of the

determinant will be 10.

4+ 0
2n,2n

- 4 < X —
M1 (NIH) Piezl + Q11 0 X MSIl1+Ql, +1 MSI1
N “\\\\\ ~. ‘\\\\\\:j i E + 0y 2q
0 4. : ‘ '
- M1 -(Nnﬂ) PiaZ] + Qn,n ! MSIn1+Qm.w+l - HSInn
tQ,
(2-24) —---—"—--"---"-'--—l-"-'ﬁz--’—'-izi- =0
- —— MR LIS -
MsI11 + Qn+1.1 m!nl + °n+1,n \ 1H1u[1 A 2} + Qm‘n,,1 0\1
' ' ! \“\‘\\\\\
: ' N .
MsI. +0Q, . - -MSI__ +Q Vs w1 - (e )2
1 2n, nn Zn,n 0 > T Ta ’
!
1

In seeking solucions, wvalues fer M, P, ia' A, and S musr firsc
be chosen to specify the wing configuration. Then, for any desired
value of C and an estiwate of reduced freoquency k , complex eigen-
values 2Z can be found from (2-24) via linear matrix eigenvalue techniques.
A computer program is used to solve for flutter conditions as
follows. With a first estimate of k chosen large enough so that the
structural damping,

Im{2)
Re(Z)

{2-25) g =

is negative for all 2n eigenvalues, successively smailer values of k
are assigned and eigenvalues computed until a positive g 1is obtained
for the eigenvalue corresponding to the aeroelastic mode which encounters
flutter. Then 2 zero-finding subroutine locates % for which g=0

for the flutter mode. Dimensionless speed and frequency, defined by

20



Uz == o
b ¥ GI,
(2-26)
J
Q= ot/
GI,

1
@ = /Rezz)
(2-27)
Q
U=¥

The flutter mode shape 1s also found, since it is related to the eigen-

vector of the elgenvalue yielding the flutter condition.

C. Comparison of Modal with Collocation Results

A rather thorough study was carried out in Ref. 1, covering a wide
range aof practical combinatious of the dimeunsionless parameters. The
present objective is not to recalculatez all of the same data but rather
to evaluate the effectiveness of the assumed-mode approach. Consequently,
(2-24) has been solved at conditions parallel to ones for which results
are published in Ref. 1 to offer direct compatison., Also (2-24) is used
to verify the performance of the VCT system developed in the
next chapter.

A comparison of assumed mode calculations with Ref. 1 vesults is
presented in Table 2.1 for three different configurations. Of these,
cases {a) and (¢) rapresent a stubby low-aspect-ratio wing (with P = .4)
whereas case (b)Iis the opposite extreme of large aspect ratio. A

E

typlcal ratio Efi = 1.6 , for example, would fix the aspect vatlo of
d
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cases (4) and (¢) at 2 and of case (b) at 20 . The mass ratio para-
meter of cases (a), (b) is in the regime encountered by sailplanes
whereas in (¢) it Is representative of conventionmal aircraft. TFinally,
the steady drag parameter is zero in the first two cases but has the
extremely large value C = 0.04 in (c}

In all cases n=3 already yields adequate modal convergence.

For the large aspect ratio case the use of one assumed mode (n=l)
gives a significant error, yet n=2 produces good accuracy. This
suggests that the second bending mode is an imporcant factor in flutter
of high-aspect-ratio wings, a phenomenon discussed in Chapter 6.

Additional cumparisons between flutter speeds and fraquencies
found by the two methods are offered in Table 2.2, emphasizing their
relative accuracy as steady drag is increased tc the very high value
C= 0,04 . Evidently good agreement is maintained in the presenc.. of
drag.

The mode shape at flutter for two of the preceding cases is
presented in Table 2.3 for wings of small and large aspect ratio, each
with C = 0.04 ., Amplitudes of the ten generalized displacements are
normalized with respect to |q¢ | ,» and the phasc angies are referenced
to the phase of this torsion moﬁe. For P = 0.4 only q¢l and qwl
have appreciable magnitude, whereas the large-aspect-ratio example
displays a significant contribution by qw2 as well.

These flutter mode shapes can be compared to the Ref. 1 results,
with some effort, as follows. TIn Ref. 1, the tangent of the angle by

which rhe torsional displacement at the wingtip leads bending displace-

ment in the flutter mnde is tabulated; it i converted here to an angle
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in degrees. The spanwise shape of the bending portion of the mode at
flutter for the two Table 2.3 cases is illustrated in Fig. 5 of Ref. 1.
Since the flutter mode's bending displacement obtained in that treatment
was complex, its amplitude at each spanwise station was taken, phase
differences being neglected in the figure.

For the present solutions a similar assumption 1s made to display
the bending mode shape of the P = 0.004 case in Table 2.3. Contribu-
tions of q, and qwz have been added vectorically at points along
the span to allow comparison of bending amplitudes with the Ref., 1
figure. For p = 0.4 , of course, only the first bending mode contributes
significantly and phase differences are negligible.

The comparison of beuding flutter mode shapes appears in Fig. 2-3,
where amplitudes are normalized to unit torsional dispiacement at the
tip. Phase angles § between bending and torsion at the tip are also
compared. Ar low aspecl ratio excellent agreement for phase angles and
mode shapes is observed, with mild disagreement in the bending mode
anplitudes. In the P = (.004 case, for which the Ref. 1 solution was
made using only five spanwise collecation poinfs, a significant disagree-
ment in mode shapes and tip phase angles is observad. In spite of this
discrepancy, the respective flutter speeds differ by only 0.82%. For
all large-aspect-ratio caseg compared this sort of discrepancy in flutter
mode shapes is observed, where the second bending mode plays a significant
role and causes appreciable phase differences in bending deflections
along the span. Mode shapes at flutter are analvzed in more detail

in Chapter 6.
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D. Divergence Including the Effects of Drag

One further application of the VT linear model is predicting
the effect of drag forces, steady in direction and magnitude and uniform
across‘the span, on static aeroelastic stability. Removal of all time-
dependent terms in (2-1) and ‘insertion of simple strip~thecry steady

incompressible aerodynamic loads gives

34W0 2 32
(2-28a) EIX —é‘-y-q— - 2llpv bd)c + -a—yT (Mzd)o) =
%9, ) 32w0
" ~— 2 — =
(2-28b) GId -é;z— + 2Mpv=b A!bo Mz —a-);z— 0]

Subseripts emphasize that deflections are static quantities.

As in the foregoing dynamic analysis, deflections are represented
by assumed modes and a system of 2n modal equations is derived, which
has a nontrivial sclution only if the determinant of the matrix of
coefficients is zero which yields the divergence speed with drag effects
included. For brevity, since the manipulations involved are quite
straightforward, the final form of the stability determinani is

presented here.

4ol 1 < ! - r _
NP1 M T% 0 | 2(1.+C)I11 2(1+c)Iln
; _—
(3) (2) (3)_, ~7(2)
| + c‘lll -t.cIll ] + c:][1n l»clhI ]
4 | 1
i | \
] i
| 1 .
. - [zas0) - {2(1+C)Inn
- I + eI 4 c1(2 + 141 ®
{ nl 1 " "Ton nn
(2-29}---—--————-——,——;2—-{0}-{-**--»- ——————————
] = [z - A )
| 8 UD - 0\1
l S~ \.‘\
| N 2 iM
I D192 L -4
i LE) b 2 (n=%) ljz—
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Solution of this dererminant for its largest eigenvalue gives the
divergence speed UD . This is of interest in the ensuing work,
particularly for studying dynamic stability of wings having steady-
state lifting deflections in the presence of drag, which can reduce
divergence spweed considerably.

For zero steady drag (C=0) the classical divergence speed comes
trivialiy from (2-29), which degenerates for C = 0 . The classical
divergence mode shape is just the first assumed torsion half-sine made,
and the first torsicen modnl equation uncouples to give the divergence

speed,

(2-30) U, =1/ -

When A 1s decreased to zero this classical divergence speed becomes
infinite; yet when C #£# 0 (2-29) will still yield finite solutions
with A=10.

A direct comparison of solutions of (2-29) with Ref. 1 results for
the effect of drag on divergence is presented in Table 2.4. Modal
convergence 1s satisfactory, but the modal approach appears to differ
more significantly from the Ref. 1 analysis for divergence calculations

than for flutter results.
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Case n UF QF % Difference
of UF from g=5
(a)
M =10.0 1 2,7175179 1.3105289 0.239%
P = 0.4 2 2,7239548 1.3114559 0.00239%
ia== 0.25 3 2.7240004 1.3124661 0.C0072%
s = 0.1 4 2.7240178 1.3114673 0.000077%
A= 0.1 5 2.7240199 1.3114€75 -
C = 0.0
(Ref. 1) 2.699 1.309 0.918%
(b)
1 4.2621908 0.842707 4.296%
M =10.0 2 4,0842768 0.8849367 0.0576%
P = 0.004 3 4.0864182 0. 8850560 0.0052%
ia== 0.25 4 4.0860066 0. 8350659 0.000597%
s = 0.1 5 4,0866310 0. 8850660 -
A = 0.1
c = 0.0 (Ref. 1) 4.032 0. 886 1.337%
(c)
M =40, 2 4.260823 1.294037 ¢.00155%
P = 0.4 3 4.260879 1.294G232 0.000235%
%1= 0.25 4 4.260882 1.2940250 0.00016%
S = 0.1 5 4.26088% 1.2940236 —
A = 0.1
C = 0.04 (Ref. 1} 4,199 1.293 1.45257
TABLE 2.1 Comparison of Assumed Mode and Collacation Methods for

Predicting Flutter Speeds and Frequencies for Tnree
Configurations
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U Q
Case 3 F
=5 | Ref. 1 % =5 | Ref, 1 %
Difference Difference
P = 0.4
M = 10.0 2,7240) 2,699 0.93% 1.3115 1.309 0.19%
ia = (.25 2.7830| 2.753 1.08% 1.3071| 1.305 0.16%
s = 0.1 2,.8623 | 2.823 1.37% 1.3024( 1.300 0.18%
A =~ 0.1
P = (1.004
M = 40.0 7.1778} 7.127 0.71% 0.8651) 0.875 1.14%
ia = 0.24 6.8588 | 6.797 0.90% 0.9074| 0.919 1.28%
§ = 0.1 6.7704 1 6.715 0.82% 0.92231 0.934 1.27%
A = 0.1
TABLE 2.2 Effect of Drag on Agreement of Modal Analysis with Ref. 1
Generalized £ ::O'& P = 0.004
Displacement Amplirude | Phase Amplitude Phase
q, 0.71276 219.62° 1.4515 195.46°
1
qw 0.00132 21.95° 0.6288 217.24°
2
0.0000271 150.13° 0.00449 201, 35°
3
q, 2.00000408 | 147.28° 0.000674 -10.94°
4
q, 0.00000213] 163.47° 0.000189 157.41°
5
q 1.0 ne 1.0 0°
dJl
9% 0.01503 222.02° 0.01454 147.11°
2
q¢ 0.,000808 215.78° 0.01786 210.39°
3
q¢ 0.000773 221.31° 0.00930 210.13°
IA
q¢ 0.000186 217.90° 0.00462 211.73°
5

TABLE 2.3 Flutter Mode Shapes for Low- and High-Aspe¢t-Ratio Examples.
(M = 40, i“ = 0.25, A =20.1, 8§ =0.1, C = 0.04)
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C = 0.02 C =10.04
% Difference % Difference
n 1) From n =35 U From n =35
D D

1 4,58288 2.0447% 3.90105 1.999%

2 4.48660 -0.0999% 3.81863 -0,156%

3 4.49174 0.0144% 3.82465 0.0017%

4 4.49067 -0.0094% 3.824G3 ~0.0144%

5 4.49109 - 2.82458 -
(Ref. 1) 4.66 3.63% 3.96 3.42%

TABLE 2.4 Comparison of Ref. 1 Results With (2-2%) Solutions for
Divargence Speeds in the Presence of Drag. (P = 0.004,
M = &40., iﬂ = (0.25, A =0.1), (For C = 0, UD = 11.1072)
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SECTION A-A

FIGURE 2-1 Physical Origin of Drag Coupling in Eg. (2-la)

AANAANY
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Chapter 111
DEVELOPMENT OF A GENERAL SYSTEM OF EQUATIONS FOR
VERTICAL BENDING/CHQRDWISE BENDING/TORSION (VCT)
A. Introduction

Chaprer IT1 includes drag loads in transverse bending and torsion
but allows no chordwise deflections. In other words, it assumes
infinitely large bending rigidity in the fore-and—-aft direction. In
this chapter we consider chordwise hending, which is & more camplete
model of the true physical situation.

A review of the literature for work conrerning VCT motfon of
slender cantilever beams led to the field of hingeless helicopter rortor
stabiliey analvsis. The structural modeling of a hingeless rotor is
essentiallyv the same as desired here, excepnt that the wing has no rota-
tional velpclty. Accordingly, if an adequate model for a hingeless
rotor can be found, it can be adapted for the cantilever wing by removing
the inertial and centrifugal tension effects arising from rotation.

Much of the work pursued tn the hingeless rotor field includes
simplifications which either eliminate or restrict one of the three
tvpes of deformation, often torslion, im an e¢ffort to reduce complexitv.
This leaves a relativeiy small body of work that treats the full elastic

5
problen. A well-known svstem of linear partial differential equations
for coupled elastic torsion and bending of twisted nonuniform rotor
blades is that developed by Houbolt and Brooks (Ref. 6); the initial
effort to develop a VCT svstem for the cantilever wing centered on
adapting this formulation. TIn the course of this work, however, the

elastic coupling terms were found to be insufficient to account for the
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drag leoads in transverse bending and torsion embodied by the terms
containing Mz in (2-1). It then became apparent that this drag
coupling is actually a nonlinear structural bending-toreien effect and
that the new system of equatious to be developed should, of mecessity,
retain all nonlinear elastic coupling terms having the same order of
importance as these drag coupling terms,

Further search led to the system of nonlinear equations fer cwiaced
nonuniform rotor blades derived by Hodres and Dowell {Ref. 7). This
work invoives development of a more complete dtrain-displacement vela-
tion than that of Ref. 6. vhich is nccessary to obtain the elascic
bending-torsion coupling tems rhat produce the desired drag coupling
effect. The equationsg in Ref. 7 are valid for atraight, slender,
homogencous, isorropic beass underreing moderate displacewents, accurate
to decond orde?r in the sense of a restriction that sguares of bending
slopes, rwisr, and atirfoil chovd and thickness divided br wing semispan
are small with respect to unity.

Although the final form of the cguations predented in Ref. 7 might
appear o be immediately adaprable to the present case by serriag che
rotor rotation frequency to zerc and removing the effvcts of pretwist,
this is zsiot entirely true. Ome imporzint assumption by Hodges and Dowell
required that the ratlo between the transverse and chorvdwise beam bending
gtiffnesses be a quantity of order one. Whereas this is a2 standard
feature of helicopter blade construction, it usuvally does not hold for
conventional aircraft wings of any aspect ratio. As a resulr, cthe Ref. 7
derivation has been carefully retraced for the specific case of a non-
rotating cantilever wing having arbitrary bending stiffness racio. The

development is outlined in the following section.
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B. Develcpment of the Nonlinear Equations of Motion

Derivation of the VCT model for the uniform cantilever wing is
presented here In abbreviated form. Important modifications of the
Ref. 7 derivation are emphasized, but duplicate manipulations are cnly
briefly described. The notation and coordinate system for the canti-
lever wing is used exclusively.

The basic ordering scheme presented in equation (4) of Ref. 7 is
retained. One exception is that spanwise warping of the cross section
due to twisting, represented by a warp displacement function which is
a solution of the Laplace equation over the cross section, is entirely
neglected here. This assumption is made on the premise that a typical
aircraft wing airfoil section would have a sufficiently small thickness
that warping effects would be negligible within the second-order frame-
work. The ordering scheme is applied to the energy expressions encoun-—
tered in the variational derivarion af the equations, to determine which
terms should be retained and which discarded.

The nenlinear strafn displacement relarions developed in Ref. 7
have been carefully examined in the context of the present problem, and
they are found to apply without modificarions. These relations are
derived from an exact transformation betireen the deformed and undeformed
coordinate sytems and originate from the classical definition of strain
of Novozhilov (Ref. 19) which is based upon increments in the deformed
coordinates. After approximation to second order consistent with all
assumptions, the final form in terms of engineering strain and in the

present notation is
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2> 9
- -

u u
EVy = u; + —%u + —%— - u: [fcowe + nsind]

- u;[— Esind + ncossd)

(3-1) ’1 €y = N0’
By =~ &0

These can be recognized as fdentical to equations (24), {25), (26), and
(27) of Ref{. 7 after the warp function and preiwist angle have been
eliminated. The displacements u_. uy. u, of the elastic axis and the
principal ccordinates £ . n of the cross section are illuscraced in
Flgure 3.1.

Development of the equations using the indirect wethod of the
calculus of variations is based upon Hamilton's principle. which may
be stated in che form

t

(=0 L * (8- - S = 0
1

The equations at¢ obtained by combining expressions for the fivst
variation of strain emergy & , kinetic energy &T , and virtual work
of external forces & .

The first variation of strain energy in appropriacte form for che
standard Fuler-Bernoulli beam uniaxial stress-strain relatiomship i

N |
- } =
(3-3) o = f aia (o \ chy + o}: 6€_\-E + oyn chn)d:: dn ay

AT

The first varlation of the engineerieg strains, expressed in terms of

displacements, is



S = Su' + u' Su' + u' Su'
Yy y x x 2 z

- [Ecosd + nsinm](ﬁu; - u; 5d)

(3-4) | - [£sing'+ ncos¢](Su] + u! §¢)
Se g =n 8o
K Geyn =~ § ¢

The stresses are simply

’
o = Eg
Yy Yy
3- = G
(3-5) J Gyg Eyg
cyn + Geyn
\
Substituting (3-1), (3-4), (3-5) inte (3-3) yields
4 2 u;z u‘2
St =.% I {E[u; + —§~ + —%— - u; fcosd + nsing)
area
- u;(-Esin¢ + ﬂc05¢)][5u; + u;ﬁu; + ué Gu;
(3-6) J - (Ecosd + nsin¢)(§u; - u; &)
= (~&sing + ncos¢)(5u; + u; 84 1
L +GIn® §7 89" + £ 9" &' 1}dn df dy

Rearrangement of (3-6) by grouping of terms having the same virtual

displacements leads to
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L . '
U = {) {Vy(Guy +uy Sux + u; Gu;) + Sy 8¢*
(3-1) + [—Mz cos¢ + Mx sin¢](6u; - u; &)
+ [Mz sind + L cas¢}(6u; + u; §¢) ldy

The stress resultants and moments formed in {3-7), which act on

the deformed wing as illustrated in Fig. 3.2, are defined as follows

<
1]

o dE dn
(3_8) y area yy

'2 '2
Yy Y,

' - wo R
EA.w{uy i eA(ux cosd - ul sing)}

where AweA = J £ 4f an
area
and i n 2L dr = 0, by definition
area
M= 4 Ea_ 4at dn
2 area vy
(3-9) ur? u;2
= "_ 1" " e [ ] 0 L,
EIZL u_ cos + uy sin ) + EAweA(uy + 2 + 2 )

vhere I = J £E2 gE dn
area

and I &ndf dan~=90
area

= 1] "
(3-10) EIx(ux sind + u’ cosd)
where I 5 ff n? df dn
area
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Sy = arfa (-& O ¥ 1 °xg)d5 dn
(3-11)
= CI ¢
where I, = [ (£? + n?)df dn

area

y I

At this point in the development the moments of inertia Ix .

are first introduced. Hereaiter, it must be recognized that 1z ‘may
assume values much larger than Ix . The terms containing the quantity
e, » which measures the offset of the tensile axis (area centroid) from
the elastic axis, will be dropped. The basis for this simplification

is that, in the finzl modal formulation of the equations, the retention

b ?
AAweAd
EI ’

x
which appears only as a small quantity added or subtracted with unity.

of e, terms ultimately leads to a dimensionless parametear,

Since it will not significantly influence dynamic stability, hereafter
e, = 0 will be assumed.
After appropriate integrations by parts within equation (3-7), the

final form for tne First variation of strain energy, including boundary

terms, is
' = £ - Tty " L]
S = f;) {[ (Vyux) + ¢ Mzcos¢ + stincb} ]wsux
4 _ B 5 "
-~ (Vy) Guy + | (Vyu;)' + lﬂz ing + chos¢) ]5uz

+ [—(Sy)' - u;(—Mzcos¢ + stin¢) + u;(Mzsinm + chos¢)]6¢}dy
(3-12)

£ ' L ' 2 2

+ Vy éuylo + EM Vy 6uxlo + u, Vy 6“210 + SY 5¢]O
. L 2
+ [-M,cos¢ + Mx51n¢]6ux| o = [~M cosd + stinch]'ﬁuxlo

+ [Mz sing + chos¢36u;|§ - [Mzsin¢ + chos¢]'6uzli
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Formulation of the first variation of the kinetic energy 1s greatly
simplified relative to the Ref. 7 derivation because there are no iner-
tial effects introduced by rotation of the helicopter blade. Since the
procedure 1s straightforward and well described in Ref. 7, the details
of forming thz kinetic energy i. terms of displacement velocities,
taking the first variation, integrating by parts over time, and expressing
the resulting form of 8T in terms of time derivatives of U o uy,
u, and ¢ are omitted here. After the ordering scheme has been

applied, the form of the first variation of kinetlc energy, with terms

retained to second order and corresponding to equation (52} of Ref. 7, is

L

6T 2 {) b ps{~ [ﬁx + $(~Esind + ncosrb)]ﬁux

area

- [ﬁz ~ $(Ecosd + nsin¢)]6uz
(3-13)
- [ﬁx(-isin¢ + Lcos¢) - ﬁz(icos¢ + nsing) 16¢

- $[(-Esind + ncos®)? + (Ecoso + nsing)218¢}dn dE dy

As nored¢ in Ref. 7, the last term in this expression is by defini-
tion a third vrder term, but it is retained in order to includg torsional
inertia in the torsion equation.

The final form of the first varlation of kinetic energy is obtained
by integration over the sectional area, which leads to the following

definitiona:
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wm= [T pgdfdn
area
(3-14) { s, = [ p £ dE dn
area
J= I p (% +n?)dE dn
\ area
with I psndE dn =0
area

The final form is

§T = {? {(—mux + se¢sin¢)5ux + (—miiz + seiﬁcos¢)6uz
(3-15)

+ [se ﬁx sing + s, 52 cos¢ - J§154}dy

The virtual work of the applied loads is
: 2
- o
{3-16) S &) (F, Sux +F, Guz + m, o) dy

Clearly the drag loads will now enter the equations of motion in the

same manner as the lifting airloads, in contrast with (2-1), since

Fx and Fz will consist of lift and drag force components.
Application of Hamilton's principle using (3-12), (3-15), and

(3-16), together with (3-8), (3-9), (3-10), and (3-11), results in the

following quantities being required to vanish:

du _terms
Su, terws
u},{z “;;2
- r —— — 1Y = ) =
(3~17a) (BA (o + ~5= + -3 =1 = 0
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Su_ terms
Lu . terms

{—EIg(~u;cos¢ + u;sin¢]cos¢

. "W " " .
{3~17b) + EIx(stin¢ + uzcos¢)sin¢} + W
- se¢ sing = O
Su_ terms
—— z—-—-—-c——‘-—

. n
{EIZ( u! cosd + uy sing)sing
— 1] 1 1 .
(3-17¢) + EIx(u.x sing + ul cosdleospl! + mil_

- se$ cos — Fz = {

§¢ terms
- (GId &y - u;[— EIz(_ u; cosd + u; sind)cosd

" n o
+ EIK(ux sing + v’ coz¢)sind]
(3-17d}
LN " n - n 1"
+ uxLEEZ( ul cosdh + u, sing)sind + m'.x(ux sind 4+ u z cos@)cosd]

- e, 0 sing - S, U cosd + J¢p - MY = 0

In (3-17a), since it is known that for the nonrotating couiilever
wing the spanwise tension T will be zero everywhere, the expression

can be integrated leaving

w'? u'z
v L X2 _
{3-18) uy + = + 5 0
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{true only with e, = 0) . This constraint indicates that the only
manner by which axial deflections u_ enter the problem is by the
purely geometric dependence on u and u, due to shortening induced
by the lateral deflections.

In replacing sing and cosd by small angle approximations, it
would be consistent with the ordering scheme to approximate the cosine
by unity. Due to the possibility of a large ratic of bending stiffnesses,
which can result in u, being large compared with u, it was found
necessary to keep the second-order approximation of the cosine at this
atep. This is done to deriwve properly certein elastic coupling terms
involving uZ and u while maintaining symmetry in the inertial

and stiffness matrices of the final matrix equatioms.

Substitution of

2
cos¢1zl—¢—
(3-19)
sing © ¢

into (3-17) leads to

(3-20a) [~ EI (- ull(1~0") + u'$) + EL (u"¢? + u"$)]"
+ miix - seiécp = F,

(3-20b) [EL (= u} + ulb)d + EL (ujo + u)(1-¢%))]1"

+m! -s#$=F
z e kA
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- (G ¢')' - ujl- ET_(-ur(1-¢?) + uld) + EIx(u;¢2 + uid)]
{3-20c) + u![ET_(-ullp + u;¢2) + EL_(u'p + u;(l-¢2))]
- Seux¢ - seﬁz +Jp=m

¥y

Reorganization of terms and introduction of the displacements w

and v for u, and u, o, respectively, gives

{[ET ¢* + ET_(1-¢*)Iw" - (EI_ - EI )v"¢}"

{3-212)
+mw - se6 =F,
1 2 nin
{- (ET, - EL)w"p + [EIZ(1-¢2) + $ET_Jv }
(3-21b)
+m§;-3:-?_ﬁ?=Fx
6L ¢" - (ET_ - EI)[(w"* - v9)¢ - v'u'"(1-242) ]
d A 4 x _
(3-21c)

Vb s - E _
s Vb + s W Jé mg =0

The underlined terms are reasoned to represent higher-order effects and
are dropped. In the case of the inertial terms coupling chordwise
bending and torsion through the offset Sy this is a third-order
effect relative to terms like mwV . The final form of the three-DOF

system of equations, with some regrouping, is

{Ewa" - (EIz - EIx)(v"¢ - w"Qz}}"
3-22a)

+ mw - se¢ =F,
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(3-22b) (ELv" ~ (BT_ - ET) ("¢ + y"92)}" + ot = F_

(3-22¢)  GIe" - (8L, - BI)[@"2 - v'H)o - vu"]

+ seﬁ =Jf+m =0

This system is elastically and inertially self adjoint, which
assures that the stiffness and inertia matrices eventually assembled
during modal analysis will be symmetric. The tarms containing
(Elz - EIx) represent the nonlinear coupiing between the torsion and
bending degrees of frecedom; all remaining stiffness, inertial, and
applied-load terms represent the same familiar forms encountered in
linear beam theory. Terms in (3-22) which are underlined do not appear
in the Ref. 7 equations and are retained here as a result of the abseace
of a restriction on the bending stiffness ratio EIZ/EIx . Stkrictly
speaking, when this ratio is large compared with unity, the single
underlined terms will increase in relative importance while the double
underlined terms are negligible in magnitude.

The nonlinear equations of motion (3-22) are next adapted to
permit analysis of stability about a steady-state deflected position
due to an equilibrium lifting flight condition, which could be level
flight or a steady pullout at a high load factor. Small time-dependent
perturbations about the equilibrium operating condition are introduced
by expressing the deflections w, v, and ¢ in terms of steady-state

equilibrium deflections Woos Vg o and ¢° and small unsteady perturba-

)

tion quantities Wi Yy and ¢l:
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wit) = v, + wl(t)
{(3-23) v(t) = v, * vl(t)
${r) = ¢° + ¢1(t)

First, the steady equilibrium deflections only are substituted
into (3-22) to abtain a nonlinear system of equations for the equilib-

rium solution. The resulting nonlinear steady system is

_ wo_ _ n — M2 "o
(3-24a) {ELw" - (EI, - EI ) {(vid - wi92)} Fo

- wo_ - " . oM R2Y 1Y =
(3-24b) {EIZVD (ET, EIx) (woqso + voq:o)} 1-"2{0

_ "wo_ _ "l _ nl PR | B | =
{(3-24¢) GLd¢0 (EIz EIK)[(W0 v )¢o v wo] + myo =0

Appropriate steady lifting aerodynamic loads are inserted for Lw and
0
M, , and the assumed steady drag, which entered equations (2-1) in an

b

engirely different manner, is introduced through Lv .

Next a linearized system of equations in the tize dependent small
perturbation deflections is obtained by substituting {3-23) into (3-22),
subtracting the nonlinear equilibrium equations, and discarding products

of the perturbation quantities. The linearized unsteady equations of

motion are
_ e | - 1] Ao ey o 1] "
(3-25a) {mxwl (EI, - EL) [¢0v1 + 0w~ dow) 2¢0w0¢1]}

+mi, - s 51 -F_ =0
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(3-25b) {BL vy - (EL_ - EL)[p w) +wip + o2, + 20 04, 1}"

+mv, -F =90

1 Xy
- " - - [ 1 - "w, i “2 -_ |I2
(3-25c) GL Y (EIZ EIx){[Zwowl 2vovl]¢o + [wo vy ]¢l
- wovy - vowl} + s i, - Jél + m = 0

1

Analysis of stability with this system can be done with the standard
techniques for linear systems, but first the ccefficients must be found
for a given equilibrium flight condition by solving (3-24). The loads
appearing in this equation, including the chordwise forces, must be
expressed as linear functions of perturbation displacements vy and

¢l . No dependence of aerodynamic loads on the fore—-and-aft motion

v, will be considered in this analysis.

1

C. Comparison of the VI and VCT Models

The VCT model (3-24) and (3-25), although different in appearance
from the VT model (2-1), in fact reduces to the same form when
T + = and the steady lift is zero. To illustrate this, first imagine

that the steady loads applied to (3-24) are

(3-26) ( m_ =10




where D is the same assumed drag force, constant in magnitude and
direction along the span, as is considered In (2-2). The sclution to

(3-24) immediately gives w,=¢, =0, leaving just the chordwise

bending equation as

- "o _
(3-27) EIZ vy D

Substitution of TEIx for EIz in {3-25) together with

wo= ¢D =0 gives

_ e _ - "y " A e -
{3-28a) ET W} (T 1)EIx(¢lvo) +omy seél le 0
(3-28b) TEL v)" + v, = F =0
1
_ w o_ - _ Ny I T 1) LA -
(3-28¢) Gqu>1 (T l)EIX[ ve ¢1 vﬁwl] + s W, J¢1 + my 0

1

The equation for vy uncouples and can be disregarded. Integration

of (3~27) twice, using the zero shear and moment boundary conditions

at the free end, gives

TEL v = D L(2-v)2

8]

(3-29)

=-M
z

where (2-2) has been used. Substitution of {3-29) into equations

(3-28a, c) vields

ppft i Ll an e - . _ -
(3-30a) EIxJI + — (Mzol) + miy secbl le 0
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_ n _ T-1 0 " R 1
(3-30b) GId¢l T Mz(wl + vo¢1) + Se¥y Jél + myl + 0
Finally, requiring that T + = , with the consequent vanishing of v, o
causes (3-30) to reduce exactly to (2-1).
For the more general case of a steady lifting condition charac-

terized by w, £ 0 and 9y # 0, (3-24) and (3-25) can still be cast

ints a form similar to (2-1), in which the vl displacements become
dependent upon W and ¢1 since T + ® ., First, the nonlinear steady
o equations (3-24) are rewritten with TEIx replacing EIz together

with some rearrangement of terms to give

_ v _ =1 no_ " " o_
(3-31a) EL w" TEL —— [v - wi¢ )¢ ] on
. (3-31b) TEL_[v" - L W+ vie2) )" = F
X O T oo (o I o} X
(o]
L1 _T;l_-_ 1w - " "o_ n2 -
(3-31c) Glgby =~ TEL [l - viwy - vi%¢ ] + v, 0

Again, as T + = ;he elastic bending curvature about the n  principal
axis (Fig. 3.1) of the airfoil section shcould go to zere. But now, the
section is displaced to a pesition fixed by the deflections LA A
and ¢0 of its elastic axis, and thie true elastic curvature about the
n axis is now recognized as v; - w3¢0 .

In equation (3-31b), which is the fore-and-aft equilibrium eguation,
28 T becomes larpge and v, becomes small, the term v:¢; is of

higher order and can be neglected relative to v; . Removing this term

and lecting Eil -+ 1 leaves

o g Sy ST
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(3-32) TElx[v; - w;éol“ = Fxo

Integrating this cquation twice, using the shear and moment boundarv

conditions on vD and wo at the frae end. leads to

(3-33) TEL[v" - w' ] = F_ “(t-v)? = - ™
X o o] o zo

Q
H

Here it is assumed for convenience that Fx is constant along the

>

span; of course the integrarions could as well be performed for anv
known spanwise variation of I-‘x . Mz s similar to Hz of (3-29),
except that it vepresents the baning—iorsion coupling effect upon the
moment-curvature relation. As T — ™ the quantiry (v; - w;¢0) must
g0 to zero according to (3-33). In the limit cthe v, deflection becomes
dependent upon v, and 2, as a result of bending-torsion coupling.

The two remaining ifudepsz:dent equations in (3-31) are alreadv

arranged so thar the coupled curvature quantitv in (3-33) can be

recognized, Sutstitution for this gquantitv leads to

-r..l
AL & 2 3 n _
En..o + L [wzongao] an
(3-34)
1" - 2L v - vl e m =0
d¥o T zo b ¢ 0 ¥o

As T = @ , with v;¢o recognized as a higher-order term, the nonlinear

steady equilibrium equations finallv become

(3-353) EIWO + [Hzo¢0] - FZO =0
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(3-35b) GId¢; - Mz wg + m, = 0
o o
Thase resemble (2-1) wich dynamic terms removed.

A tinal exercise 1s to demonstrate that the linearized unsteady
perturbation equations {3-25) alsc reduce in a systematic fashion to a
VT system when T + @ . When (3-25) are rearranged with TEIH
replacing EIz "and the combination of steady deflections in (3-33)

replaced by Mz s the linearized system becomes

[e]
- = 11y LI ;f:i "o "o "
(3-36a) hlxwl + [Mz°¢1] TEIx T [V1 dJowl wo¢}1)¢o}
+ m - Se¢1 - Fz = 0
1
- wo_ L‘l " 1" 2N " "
(3-136b) TEIx [vl P (¢le + w0¢,1 + ¢ovl + 2¢»ovo¢l)]
+ mv, - Fx =
1
(3-36c) GI,o" + TEI ol 2 [V~ @ ul' = wp dw” + 2v"h v, " + v"zq) 1
da'1 X T 1 11 01”0 “ool o "1
- " 3 — ‘ =
Mzowl + s, Jél + myl 0

The underlined terms are of higher order for 1 > 1 and are discarded.

-1

When 1 18 sufficiently large that - 1 , equation (3-36b) bhecomes

" - " - b " - - et
(3-37) 'l'EIK[\rl q&ow] wu¢1] F:,c my
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The quantity f , defined as

(3-38) B = VI - ¢0w$ - w;¢1 .

is recognized as the time-dependent curvature, in the linearized
perturbation deflections, about the n axis of the steady-state deformed
cross section. Thus it is expected that &s T + ® the curvature B
must approach zero.

The dynamic linear woment Mz is defined as

1

(3-139) le = - TEIx B

Equations (3-37} and (3-36a, c¢) can be restated, after use of (3-38}

and (3-39) togerher with T + = | as

_ - 1 " " 7 — 4 - =
(3-40a) Lwal + [Nz ¢l] + [MZ ¢0] + ™ seél Fz 0
0 1 1
(3-40b) M" =F - mv
z, Xy 1
2. . 3 "o " _ " S . _ N -
{3-40¢) (‘Id¢L Hzowl le"o + 8%, JqSl + myl 0

Since B + 0 , the acceleration term in the second equation could be
expressed entirely {n terms of w and ¢ accelerations by working

from integration of

(3-1‘1) vl - ¢0W1 - wo‘ﬁl

In this linearized unsteady system, Mz {y,t) represents the moment at
1

station y due to the instantan20us chordwise inertial loads and applied
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linearized unsteady drag forces acting cutboard of the station. Because

of the dependence of Mz upon w, and ¢1 , equation (3-40b) cannot

1
1
be uncoupled to allow for a separate calculation of M: . Thus, even
1
though vy can be eliminated, {(3-40) still involves three unknowns

LA ¢1 s and le .

The purpose of this section has been to demonstrate analytically
the connection between VCT representation of the zantilever wing, given
by (3-24) and (3-25), and the VI system given in (2-1} and used in
Ref. 1. It can be concluded that the VCT model remains valid for
arbitrarily large bending stiffness ratio T , and that the drag
coupling effect has been satisfactorally accounted for by the nonlinear
elastic bending-torsion coupling terms. Since the forms obtained in
(3-35) and (3-40) are but special cases of (3-24) and (3-25), actual
solutions will be foupd, using the latter system only, for practiecal

values of T .
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FIGURE 3-1 Coordinate System and Displacements

FIGURE 3-2 Stress Resultants and Moments
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Chapter IV
FLUTTER VELOCTTY CONSIDERING VERTICAL
BENDING/CHORDWISE BENDING/TORSION (VCT)

A. Modal Equations for Small Oscillatory Motions About a Steady-State
Deformation

The model for torsion, transverse bending, and chorduise bending
of the uniform curntilever wing developed in the previous chapter is
used to determine flutter velociry with of the same set of assumed
modes used in (2-1). Use of n sssvmed modes In torsicn, n in trans-
verse bending, and n in chordwise bending results in a set of Jn
modal equations in terms of modal generalized displacements. $ince the
assumed modes satisfy rhe natural as well as geometriral boundary
conditions, which were obtained during the application of Hamilton's
principle, Galerkin's method can be emploved to transform the equations
into algebraic relarions in the generalized displacements. The nonlinear
steady-state equilibrium equations (3-24) become nonlinear algebraic
equarions in the steady-state generalized displacements, which are
solved iteratively. These displacements determine the coefficients of
the linearized unsteady model by applying Galerkin's method to (3-25).
Then the velocity is determined for which simple harmonic motion of
this system is possible (neutral dynamic stability).

The steady aerodynamic loads for the equilibrium equations (3-24)
are specified in terms of incompressible strip theorvy. A typical air-
foil section (Fig. 4-1) has its zero-lift line inclined to the free-
stream velocity V by the angle o + tbo(y) .  The resultant steady
1ife La (acting in a direction perpendicular to V ) and the moment

o
mD are given by
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I
|

= 2Mpv2b(a + o)

(4-1)

m,o = 2Mpv3b? (Vta) (o + )

A drag force D is also present. These forces must be resolved into
the axis system x , v, 2z fixed with respect to the wing root. The
required transformation is

: La cosa + Dsipo
(o)

——
|
N
o
b}

=
n

Dcosa = 1.a sinat
[o] o

Assuming sina ~ o and cosa © 1 ond neglecting the z couponent of

drag shows that the steadv aerodvnamic forces to be used with (3-23) are

- Y4
FZ = 2Mpv“bla + ¢0)
o]
(6-3) ¥ = 20pvip(C - o - o )
KG &
- 2.2
myo = 2ipveb-Afa + ¢o)

The drag force represented bv C 1is constant spanwise, and the
definitions in (2-22) have been adapted.
The steady-state deflections are now expressed in terms of the

assumed modes (cf. Appendix A for definitions)
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Bending mode shape functions Ew and fv are identical. Substi-
i i
tuting (4-4) into (3-24) and (4-3) and applying Galerkin's procedure

leads to

EIxf (z £."q2 )f dy = (EI-EI ){I [(Z £, q; )(r f, qf )I"E dy
i=1 iq“ " wel Yu Vwvel v B Yy

)(E [y ag) 1"f, dv}

(4-5a) f [(X f" )(E i
AR b vy

fv=1 @ ¢

v v u=l

= 2Mpvibiaf e dy + [ ¢ r E g, SRLA 4
J 3

n
£ £q2 ) dy - (BI,E1 ){f (@ £, af )@ £y ag YI"E, dy

1YV Yy 1=1 ¥4 Y5 ye1 Oy 0y Y3

—
3]
Q

pds o~

n
)3 f“ © )(E f, q° )(Z £ )]"f dy}
=1 i Jy=1 ¢v ¢v u=l ¢u ¢ j

= IMpv?b{(C - a )f f,dy - o f ( £ £, 02 )f_ dy)
vy 1=1 ¥ Vi Vi

(1 <j<n) n
oA /A ( E f@ q, )f¢j dy
n n
- (EI_-EI ){I (iglf“iq"i)(vi1fuwﬁq;°)(u£1f¢u 3 )f¢jdv

{4~5¢) } f ( Z £ q° )¢ 5 £ q° )( Z f G° YE, dv
© =1V ov=l W oue Bt Y
'3 n n o
- f ( X f" qo )( z f“ )E dy
0 S ViV e by
\ Mev2bAla [ ; :
= - 2Mpv?bAle L f, dy + L (L ¢ q° yE, dy]
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The indicated differsntilations in the first two equations are carried
out, and appropriate integrations by parts of the resulting modal
integrals is performed. The first terms of each equation are then
expressed in terms of modal natural frequencies as in (2-10) and (2-11)

which leads to the form

5 EIx n n
e Lg% -~ (T-1) £ I H q0 q°
wj qwj [ p=1 vel Vi ¢v vy
EIx n n n
(4-6a) +—=5 (1-1) T I I R, q: q7 ¢q°
t p=l =l g=1 TIVM Th, e, ey
n 28.a )
- 2Mpv?be I q° = 2Mpv?be|- —I_
iv 7 NI
v=1 Y i
. EIx n n
mw 1q® -—=¢+ (-1 L H_ ,qq°
wj Vj 2 v=1 =1 ViJ ¢“ wp
EI‘: n n n
(4-6b) - (t-1) I I L om, a; 4q, a°
¢ v=l =1 1=1 IRV U0, 0 vy
e
) 2 e 2 - -
+ 2MpVebia T Ijvq¢ 2NpV<bi NH(C a“)l
v=1 Vv 3
(1 <j<n
, EIx n n n
Jw Q2 + =+ (-1)I I I R ° q° qF
‘bj 2 ¢J ¢ v=1 p=l j-1 HVil q"u Yu 2
EI_‘ n n n
{4-6¢) -=(-1) I I I R ® q° q°
% vel p=l g=1 WL vy vy oy
= 20pyb2 LA 1 _ «a
(3=

Bj and Nj are properties of the assumed bending modes described in

Appendix A, and Ii represent the modal integrals previously encountered

§
and defined in (2-13). The nonlinear bending-torsiom coupling terms

give rise to two nev forms of =eodal integrals,
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1
(4-7) H, =/

v T %o f¢j M (ML, Grdy

M \Y

s R =l £, 005 G, Oty OF

Eguations (4-6) can be arranged in rhe final format used for computa-
tions by dividing the torsion equation by Ipv22b? and the twe bending
equations by Hpv2eb , ueing modal natural frequency relatioms in (2-14)
and (2-15), and nondimensionalizing wlth the parameters given in (2-16)

and (2-26).

@ o
i Y, (=DM, [n n qvu
NS = = - ———= | T I H q° —
j Ut b U Lu=1 vy ViU o b
(4-9a) .
n n n qwi n 4R,
- £ ¥ I R, 9 qf —{-2 L I_q3 =-_J2
pel vel ge1 MWV e, BTN T G v B T R
e °
. q . qw
TMPL v MPi T n
188 0N _U_‘,_‘l_ -1 - -1y -1—123 L ijq:’ _bﬁ
{ v=1 u=1
{4-9b) ,
n n n qvi] n x‘;Bi ,
+ £ & I R, ° °o _tl hoy £ OT o - _Jd (con
ve1 pet gmp WV 0, %0, 7B v %, MR e
A<j<m , M,
(12 (3-%)° —7- - Alq?
u b
h]
Mi [n n n ‘lgv ‘lwu
(4-9¢) +(1-1) —r—~ jI I I R —_— == q°
U9 fvel p=1ogep WVIL BB TRy
L-J ° o o
n n n q\' qvv n n qv q\;
- I IRy e e - DD
v=1 p=1 i=1 i u=l p=1 3
1
R TS
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A solution to (4~9) can be found for a given wing configuration
once drag C , root angie of acttack a , and dimensionless speed U
have been specified. The solution procedure involves Newton's method
and is described in Appendix C.

When simple harmonic motion is assumed, the linearized parturbation
ejuations of motion (3-25) are converted into linear algebraic equatioms
via the same steps described in Chapter Il in deriving modal equations
(2-18) from (2-1). The perturbation displacements are expanded in

terms of n assumed modes and generalized displacements,

b §
w.iy,t) = L f (v)q e
1 i=1 i i

wr

n
- - T . it
(6-10} v (v, e} I f (g, e

{=1 i i

n
T 17 4

¢l(y.t} = f¢{(y)q°i e

f=1

where q, and q, have dimensions of length, whereas are
i

i qél
dimensionless. Anticipating solution for flutter boundaries using the
Veg methed, structural Jdamping g {3 included by introducing a complex
clastic modulus, and the simple harmonic afrloads are assumed to have
been expressed la terms of unit pencralfized forces as In (2-9), With

the addirion of the fore-and-afr bendine depree of freedom. the

genersiized forces now appear as

~ir

{4-71a) A Fz!(cl'”l“"ui dv
(1% jsn)
n q"[ n X34
- IdB T o —_—+ I 0 ., q le
jmp Je1 Py deivin Ty
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£
(4-11b) fo Fx (Ol.vl.t)fv dy

i i
n q‘:‘ n .
=Moo T QL he T oa gttt
i-l ,! L] i-l +“| « T 'vi
(1< j=<a
St
(4-11c) L om, (ol.wl.t)t‘c dv
1 i
n qv n
-« Towdb i T 0 N T o q h‘""“
' jmp 1¥2o.l b fmq 1F2044In T2

The omission of columns in the arrav Qi.i having n +1 < { « 2
reflecns the assumaption thact there {5 ne dependence of unsgeads alr-
loads upon fore-~and-aft motions vy -

After Galerkin's method has been izplemented for equitions {3-2%)
by the same manipulations required to develop (2«17). the svatenm of
In modal equations which determine linear stabilitv about the stessy
equilibriun deflections appear in the form

U

. { A Y L ‘____l
f M- ?\j .'.P!n 7} .

n n n q\fi
+ sflmj“ - (mMPE 7 u:! vsl LTI q:’.u q;\-} e
n n qvl
(4-12a) <! + li:‘{(r-:)mta z ufl u““ qsuz,,g_
i i n q:'u T n q‘:\’
% - = {(x-1MPg uufl Wiy 8 - 2 ui! ;IR\‘ "“q‘:u !
‘\ -sui 0



: Py, o
/ !:1((?}"‘0-1 + (-1)MPL 2 ufl B q%}fb—_
qV‘

+ (v - m*NINPL 2} -5-l

b]

] n n q\.’i
+ I {¢e=1)MP1_2 I TR, g* q° }—
i=1 s yw] =] 13wy "u gv b
i
- -]
n n q\fu n n qvv
+ I d{e-1)MPL_Z{ T H, —~—+2 I I g7 1
o o BTy Mare oy vy iut T B
* Yan, e’ 7O
{1 £ 1 <n)
L L]
n n q\v'u n n qwu
TiG-MPL_ Z[ T H —£ -2 I I R g% —1
( fwl @ =1 piy b u=} v=] mivi °\: b
q"'i
(-] -]
,. = ; - q\-‘u n n q\'u ;Vi
(4-12¢) + TA(-MPL (T R =t +2 T I R .q) b
\ 1=l A Wb u=l vy MIVITE,E D
4, Qo s g
n n 43 v v n n
Do+ szt ER F - I IR EE q‘*u]
f=1 yml vey WV p=l v=1 WV 5 R

2
+ Qj+2n.i+2n}q°£ + g 1 - H’(j-’i)'lll‘q% =0

Here njuv and Riju'u are the modal Iintegrals defined in (4-7)
and (4-8), which appear in this system multiplied by steadv-state
generated dfsplacements. The cefficients of terms which couple the

steady deflections into this system must first be constructed by the

indicasprd summarions before the eigenvalues can be determined.
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The unit generalized forces required in (4-12) will now be expressed
in terms of the two-dimensional incompressible unsteady aerodynamics
adopted for (2-2) and (2-3). 1t will be necessary, as it was for the
steady aerodynamics, to transfer the airloads from wind oriented axes
to the coordinate system fixed at the wing root. For the present case,
the circulatory part of the unsteady 1ift will be assumed perpendicular
to the direction of the freestream velocity, whereas the noncirculatory
portion will be assumed to act normal to the chord of the airfoil sec-
tion in its steady-state deflected positien. The inclusion of unsteady
leading-edge suction effects will be censidered in the next chapter.

To separate the circulatory and noncirculatory centributions to
the 1ift, L_ in {2-2) ana (2-3) can be rewritten in the form (cf. Eq.

(4-126) of Ref. 5)

- . _ 3,21 L . L ~ it
{4-13) La(wl,¢1,t) Tpb [b + + a¢1]
b 2%

+ Tpb2wc(k) [~ T 1} + —k-% + Z,Tl (%—aﬁl]elm

Here the first term on the right represents noncirculatory lift L
e
and the second term the circulatory portion La . Referring to
C
Fig. 4-2, these terms can be expressed as resultant forces in the xz

frame by

F = La cost ¥ L cos¢o
21 c : NG

(4=14)

F =- La sind + La sian0
*1 c Ne
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Kaking the assumptions cosa = 1 and cos¢0 = 1 vields the identity

(4-15) le S L,wga0,50)

When it is assumed that sina = a and sind;o = ¢° , the chordwise

force components become

v, 23
- = 3,2 2i 71 77 24, g g lwe
{4-16) Fx1 Toblw?e C(k)[k T " . (fra)¢1]e
v, 1%
+ ﬂQb3w2¢GIj} + “El + aﬁil]eimt

Preparatory to sceps that lie ahead, it can be seen that when the
unit generalized forcos are determined from (4-11) with the modal series
for ¢o . wl , and ¢1 inserted, modal integrals of the forms

t
f

f
[s I )

1 (y)f¢ {(v)dy

(Y)f
Y v

1
.% fvi(y)f%(y)f¢ (v)dy

3 \Y

will be encountered as a consequence of the noncirculatory contribution
tto (4~16). Since these integrals do not occur elsewhere and the effect
they introduce is expected to be minor, the noncircularory contribution
to Fxl is neglected altogether. This simplification has the result
that the unsteady noncirculatory force illustrated in Fig. 4-2 acts in
the z directicr at all spanwise stations.

The remaining circulatory comtribution te Fx can be expressed,

1
using the notation in (2-3) and after some manipulation, as
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w
- 12 _ 1 _ i . ¥ Liw
(4-17) F"l Mob wial (1-L,3 5=+ [Ly ~J5 + ¢+ AL 1) e

t

With rhe aerodyrnamic loads given in (4-17), (4-19), and (2-2),
where myl(¢1,wl:t) = ma(w1,¢1:t) , the unit generalized forces can
be ¢ :veloped. starting from (4-11), by means of the same steps followed

in assembling (2-22). The final result is

o,

L, (1=1)

0 (i#1)

Q -
i,i+2n - (Lo - AL) Iji

T Yinnw)u (1=3)

0 (1¢9)
i
(6-18) < Uun, 1420 = Il - 4 R AG-L T
{1<3<n)
(1<i<n) Qj+2n,i - - M‘W)Iij
Q.- - 2 =13
i+2n,1i+2n = !-5[24¢ - A(L¢ + M)+ AT (i=1}
0 (1#1)
\ Qv,i+n =0 for < v <3n
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B. Solution Procedure for Flutter Velocity of a Lifting Wing

The 3n mcdal equations (4-12), with (4-18) inserted, can be

expressed in matrix form

(4-19) (M) + [QDla} - 2zl {q} = 0

The mass and stiffness matrices Ms and KS are real and symmetric
and are writtsn out in Fig. 4-3. The terms in KS include sums of
products of modal integrals and the steady equilibrium generalized
displacements found as solutions of (4-9). The aerodynamic matrix
Q) , whose elements appear in (4-18), is complex and nonsymmetric.
Eguation (4-19), therefore, represents a complex eigenvalue problem
for the complex frequency parameter Z . 1Its solution vields damping.
speed, and frequency as in the case of (2-25) and (2-27).

The logic used to compute neutral stability conditions from
{4-19) is diagrammed in Fig. &~4. The primary difficulty encountered
when steady deflections are introduced is that a preliminary estimate
of speed Ue must be made before the eigenvalue problem can be salved.
Steady deflections for U, are used to generate coefficients in K,
and unsteady aerodynamic loads are then computed for large enough
reduced frequency that the eigenvalue corresponding to the aeroelastic
mode which flutters has negative (stable) damping g . Successively
smaller values of k are then substituted and aerodynamic terms
recomputed. The eigenvalues are recalculated until positive damping
occurs for the flutter mode. From this point a zero-locating sub-
routine determines the reduced frequency for which damping g is zero,

whereupon one can calculate flutter speed U The entire procedure
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is repeated with a new estimate Ue until the speeds Ue and UF
are adequately matched. The flutter speed determined for zero lift
serves as a good first estimate for Ue . With care, close agreement
of the two speeds can bhe achieved in three or four iteratrions.

Three assumed modes in each degree of freedom, corresponding to
a system order of 9, are found to give adequate converpence for all
cases. The model integrals were computed to allow n < 4 , a task
which required numerical integration of 100 gquantities of rype R

1ijuv

and 4C of type Hipv .

C. The Nonlinear Elastic Coupling Trerms

The need to retain zil verms in (3-22), including third degree
nonlinear, in order to model adequately the nonlinear elastic bending-
torsion coupling mechanlsm is now demonstrated by means of typical
applicatiens. OFf course, neglecting higher~order nonlinear effects
would have the appeal of reducing complexity. For example, removal
of all third-degree noanlinear terms would result in the eliminarion
of all terms containing quadruple modal integrals Rijuu from both
the nonlinear steady equilibrium system and the linearized dynamic
stability analysis. In order to examine the effects of such approxi-
mations, numerical experiments ware conducted wherein higher degree
terms in both the steady and unsteady modal equations were neglected.

First, static deflections are considered. Clrarly, 1f the
equations do not adequately represent the steady-state deflections

of the wing over a realistic range of lifting conditicone, then any

linearized unsteady perturbation analysis based on the same level of
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approximation cannot be expected to succeed. The nonlinear steady
equations (3-23) wiil be solved at rthree lévels of approximation:

(1} ILinear terms ouly retained.

(2) Second degree monlinear terms included.

(3) All nonlinear terms included.

The linear set of modal equations is just (4-92) with the nonlinear

terms removed:

MPi q; n 4B

R IR RS

J vel V% 3
"o iy g b ﬂi

(4-20) a1 — +2 L I, q° =- (c - a®)
h] U b v=1 JV ¢V HNj
Mi
L1241 2 Q - L~ __Z_Aa

The torsion equations are now seen to be n uncoupled and immediately-
solveable relations for the n generalized displacements q$. . The
results permit solution for the bending displacements, thus eiiminating
the need for matrix operations. Since all elastic coupling terms are
absent, deflecticns v, and ¢0 are independent of the stiffness
ratie T and the steady drag parameter C . A very important conse-
quence is that the mechanism by which drag influences divergence is
missing. One concludes that (4-20) is a particularly poor representation
for steady deflections in the presence of steady drag.

Retention of the second-degree nonlinear effects from (4-9) invelves
adding to (4-20) all terms containing the triple modal integrals

Hivu . The system becomes fully coupled, and solutions are found by
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the sare itevative scheme described in Appendix C for solving the full
nonlinear system.

The behavior of the second degree nonlinear solution is compared
with the linear deflection from (4~20) in Figs. 4-5 and 4-6 . Here
it is shown how the deflection in the first verticel bending mode and
the First torsion mode vary with increasing speed for a fixed angle of
attack o = 0.01 radions of the wing root. The parameters M , F ,
iu » A, and T for these examples correspond to the idealization of
a sailplane wing discussed in Chapter V1, and sufficient modal con-
vergence is assured by using n=3 . Numbers on the ordinate of Fig. 4-5
show the actual twist in radians of the wingtip due to the first torsion
mode; the vertical deflection in semichords of the wingtip due to q;l
is just twice rhe value read from the ordinate of Fig. 4-6.

The imporrant influence of drag on the steady deflecriors is
evident. But there is poor correspondence between the second degree
nonlinear deflections and the divergence speeds indicated in Fig. 4-5 ,
which are solutions of the linear stavic stability determinant (2-28).
This discrepancy is most pronounced when C=0, and the rapid divergence
of the second-degree nonlinear deflections for all values of drag
suggests trouble with the second-degree approximation,

Figures 4-7 through 4-10 show solutions of the complete non-
linear system (4-9) for the same wing counfigurztion, together with the
linear results. Correlation with the divergence predictions appears
to be excellent, and the sudden blowing up of deflections characteristic

of the second-degree nonlinear solutions is not encountered. Since the

iterative procedure used to solve for aonlinear deflections commences
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with the linear solution as an initial estimate, nonlinear solutions
which do exist for C=0 above the classical divergence speed cannot
be cbtained.

The full nonlinear solutions conform with nonlinear hehavior
expected by intuition. For zero drag, the vertical bending and torsion
deflections should fall below the linear solution owing to the effec-
tive increase in stiffness 'seen"” by each degree of freedom due to
deformation in the other. This effect is observed. The slight rear—
ward chordwise displacement (Fig. 4-9) for C=0 vwhen v, and ¢O
are large comes from bending-torsion coupling, and the negative contri-
bution of the second torsion mode (Fig. 4-10) reflects a redistribution
of elastic twist toward the wingtip where the curvature due to v is
less. Drag alters the deformed state radically and causes large
displacements at much lower speeds.

A clue to the reason why the second-degree¢ terms alone are inade-
quate is found by looking at the sensitivity of solutions teo changes
in the bending stiffness ratio T . The second degree nonlinear
solution for bending deflections, given in Fig. 4-11, reveals increas-
ingly poor behavior as T 1is increased. Conversely, the complete non-
linear solution behaves as intuition would anticipate, becoming
insensitive to changing T as this parameter grows toward <« (Fig. 4-12).

In Chapter III the behavior for T-+® of the steady nonlinear
equilibrium equations was analytically investigated. In the discussion
following equation (3-33) it was pointed out that the quantity
v ¢0w; represents the actual curvature about the principal axis

fo]

of chordwiss bending for the deflected airfoil section, and that this
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quantity should vanish as T + «® ., In this limit any chordwise
deflection is a geometric consequence of elastic coupling between ¢o
and w, i terms which contain the product T(v; - ¢°u;) approach a
finite value. Now, referring to egquatiomns (3-24), it can be seen thiat
in the second degree approximation this product is retained in the
second equation but not in the vertical bending equation (where w:¢z
is dropped but v: o retained). Likewise in the torsion equation,

”;z¢o is dropped bur v'w" is kept. The result is that terms

containing wy remain and blow up in the limic T = = ., Accordingly,
the conclusicmn is reached that, for structures representarive of air-
craft wings for which 1 1is reasonably large, the third-degree terms
containing the product w;¢o must be retained, It may be added that,
although this elastic coupling effect was neglected in the helicopter
blade equations developed in Ref. 7, in that case the ordering schemne
required T to be on the order of unity. Another point is that the
remaining third-degree terms in (3-24), which contain the product

v;¢0 , actually can be neglected when T 1is large.

Since it has been determined that third degree terms cannot be
excluded from the steady ncnlinear equilibrium analysis, it faliows
that they must also be kept in the linearized unsteady psrturbation
equations (3-25). The original dynamic stability equations used early
in this investigation, on the other hand, consisted of a linearized
unsteady perturbation system based on the secand-degree nonlinear
approximation. That 1s, they are the result of removing all terms

containing the modal integrals from (4-12). Irregular behsvior

Rijuv

of the flutter speed with increasing angle of attack ¢ was discovered,
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As was an éxtreme sensitivity to large Tt which could not be justified

physically. Furthermore, linear steadv-state deflections were used--

a particularly unsuitable approximation for inclusion of steady drag.
Examples of these original flutter calculations appear in Figs.

4-13 and 4-14, The former gives a compariscn of the early resultrs

with the full analvsis by (4-12) for the sailp&uue.example. gshowing

how the simpler approximation differs significanily in flutter speed

even in the presence of moderate steady deflections. Figure 4-1i4,

based on a different wing configuration, gives an i{dea of the difficulry

encountered for large T when using the simpler analysis., (Note that

the steady deflections are quite small in view of the fact that this

example is a large-aspect-ratio wing). All of these stability bLoundaries

abruptly terminate, at which point the eigenvalue solutions began to

behave erratically. In contrast, fluiter solutions of ({4-19) can be

obtained for arbitrarily large steady deformations—- indeed for tip

deflections well beyond practical limits of material linearity.

D. Comparison of VT and VCT Calculatious

The flutter velocities found using the VCT model can be :hggked
directly against velocity computed from the VT model developerd in
Chapter II. Although such a comparison restricts the former method to
the special nonlifting case W= ¢o = (0 , its basic approach of
linearized perturbaticn motions about a steady-state deflection solution
can nevertheless be tested by inclusion of steady drag. This is
because the drag effect enters the stability determinant through

coefficients depending on Voot The chordwise bending equation of



motion is uncoupled when w, "V, " 0 , and flurrer modes involve
just verrical bending and torsion.

The VCT stahiliry equations were analytically recduced to the VT
form (2-1) in the last chapter by specifving a = 0 and 7 - > . This
agreement is reflected in numerical resulcs, as avidenced by Fig. 4-15.
For an exceptionally large magnitude of drag, C = 0.0% , chosen to
magnify the icportance of drag coupling and hence the steadv deflections
in the scability analvsis, the two methods are used to compute flutter
spizeds for the same nonlifting configuration. The YT analyses were
mede for T ranging from 1 to 10,000.

As is always true for EIZ = EIx , the drag coupling effect
vanighes at T = 1 with flutter speed unaffected by drag. At the
other extreme, for T = 10,000 the computed flutter speeds for
C = 0.04 differ by a mere 0.052%. The Ref. 1 flutter speeds calculated
for this same configuration are also shown and agree quite well.

When one examines the VCT dependence of flutrter speed on T
(Fig. 4-15), the effect of drag is apparently insensitive to T over
the range of this parameter representative of practical airerafr
applications. Hence the VT system (2-1) does not suffer by its
inherent assumption that T » @« ,

Table 4.1 presents a further comparison of results from the two
approaches for a different configurztion, in which modal convergence
is emphasized. Of course, since T = 50 exact agreement cannat be
expected.

Convergence of flutter speeds and frequencies and also mode shapes

for the VCT solutions is documented in Table 4.2 for zero steady
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1ifz and in Table 4.3 for a lifting condition specified by a = .0}
rad. In the latter case, ths apparent slover converxence is relatved

to the steady lifring defleccions (also tabulated), vhich alss wary

with n .
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n Up. VT Up. VCT
2 4.260823 E 5.258457
S 4260879 i 4.258351
. 4.260882 ! 4.25833%
s 4.260889 4.25811%

AT and VCT

Systens.

A0, S5=01, 7«50, C~ 0.04}

Comparison of Modal Flutter Speeds Compuced with thsz
(= 40., P = 0.5, lu - 0,235,

n=1 n=2 n=13 n=4
UF = 4.15027 UF - 4.183899 UF = 4 183883 UF = 5.183915
» 0.85254 QF = (_.0B876R ﬂp = 0_88757 QF = D.BE758
AMPL. l PHASE AMPL. PRASE AMPL.. ! PHASE AMPL. PHASE
9, 2.1800 | 224,547 | 2.0650 |223.87° | 2.0659 |223.B77|2.0659 [223.87°
1
9, - 0.6345 | -46.85° | 0.6309 {-46.B4°|0.6308 |[-46.85°
2
q - - 0.0107 |- 4.46°10.0197 - &4.26°
Y3
q - ~- - 0.0022 1.89°
Y4
q 1.0 0° 1.0 0° 1.0 0° 1.0 0°
¢l
q¢ - 0.03067|197°.53° | 0.03075}199.70°}0.03075(199.70°
2
q - - 0.00340|- 5.55°|0.00339]- 5.67°
3
q¢ - - - 0.0059 {220.49°
[ | [ i |
TABLE 4.2 Modal Convergence for Flutter at Zero Steady Lift. (M = 9.4,

P=0.01, i
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n=2 n=3 n=4a4

Uy = 3.5495 U = 3.5329 Up = 3.5315

2, = 0.68200 Q. = 0.67468 Q. = 0.67276
q:i 1.19¢55 1.18142 1.18074
q;? 0.01336 0.01333 0.01333
q;3 - 0.000817 0.000818
q;& . - 0.000151
q;l 0.002276 0.002296 0.002305
%, ~0.000279 -0.000284 -0.000284
q;3 - ~3.000033 -0.000033
ay - - -0.000005
q;: 0.0087100 0.0087591 0.0087656
q;q 0.0000373 0.0000%15 0.0000983
% - 0.0000017 0.0000090
q;3 - - 0.0000013

4

AMPL. i PHASE® AMPL, JI PHASE" AMPL.j PHASE®
%, 2.4492 | 227.45 2.4765 | 227.68 2.4860 | 227.76
%, 0.52487 | ~26.65 0.50948 ‘—26.27 0.51068 | ~26.23
%, - ( 0.01637 ‘— 6.54 0.01612 ) - 6.57
Q, - ‘ - | o.oozsol - 1.47
qu 0.84595 ’- 4,77 0.85914 !m 4.89 0.86569[ - 4.98
qu 0.03071 ,;79.03 0.92979 |1ao.oz 0.02916{ 180.20
qV3 - Y 0.00923 '172.67 0.00532 | 172.76
q, - - | 6.00122 | 172.56
q¢4 1.0 | o 1.0 | o 1.0 0
q¢: 0.07178 I—21.65 0.07798 l-zo.ss 0.07947 | -20.73
%, - 0.02793 |~ 4.83 0.02925 | - 5.06
%, - J - | 0.00998 k 8.60 j

TABLE 4.3 Modal Convergence for Flutter at Steady Lift for o = 0.01 rad.
M=9.4, P= 0.01, ia =0.2%, A=0.1, §=0.1, T =125, C = 0)
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CONFTGURATION:
M,P,ia,A,S, 7,0

'
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’
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:
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qo qoqul,
vi'
!
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ITS INVERSE

!

~m—— ESTIMATE k |

!

COMPUTE |Q |

ELIGENVALUES OF

+
SOLVE FOR COMPLEX ‘

! . {1
[l}csl (]MSMQ])-[IJZ 194=0
WRITE Q,U,g FOR ZERO FINDING
ALL EIGENVALUES ,| ROUTINE FINDS
[ k FOR WHICH g=0
IS g0 FOR N _'ES ]
FLUTTER. MODE? .~ | WRITE @, UL I
NO N 4 1
< 2
< LAST k? > R
‘o YES | EIGENVECTORS
TAST FLIGHT FOR FLUTTER
_‘_—< CONDITION ? >' MODE
YES 4

FIGURE 4-4 Flow Chart for Solution Procedure Using V-g Method
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FIGURE 4-5 Deflection of the First Torsion Agsumed Mode for o
and Increasing Sgsed, Comparing Linear and Second-Degree

Nonlinear Solutions. (M = 9.4, P = 0,01, ia = (.25,
A=0.1, §=0.1, T = 25, and n = 3)
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FIGURE 4~7 Amplitude of the First Torsion Mode for o = 0.01 and

Increasing Speed, Comparing Linear and Full Nonlinear
Solutions. (M = 9.4, P = 0.01, icn = 0.25, A=0.1, 8§ = 0.1,
T = 25, and n = 3)
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84



(¢-7 914 ul se aueg si12jaweieq Yujupewsy) ‘suopirwixoaddy iesurq pue

lpauj[uop a9i¥ag-puodag Buls) ‘1L ‘sa apol Jurpuag [EDTIAVA ISIT4 2yl jO apniTrduy

N
L 'S

7 ‘|

jeauy| — — ——

sesuijuoy 88168p PUDIES e

1T1-% 24NO1d

0°¢

67

85



(L-v 814 Uy se aueg sadjaueled gujuieway) °suojlewixoaddy
1@9uj] pue iwaujluoN [Ind 3ugsq ‘L *SA apoy Jujpuag [BOFIL3A IEAT4 AUl jO apnatrdwy Z1-% 3UNO1J

, I ._

§ =2 € = 4 eouy — ———

JeauljuoY ——————

0¢c

§'¢

86



(E=u pue ‘0 =9 ‘67 = 1

V ‘6270 = T ‘T0°0 = d ‘9°6 = W) -sTsATeuy ay3 uy suorieurxorddy
M1 103 Juswsoe[dsyg d¥l-8urp Apeels jo uor3zoung e se peadg ae3anld ¢I-v HUNOIL
dli( q
m
00 Qm -v -n .N Q—. to
I | 1 1 I |
HYINIINON 1INd — = ——— 4

HYINITNON 338550 QgNOD3S

87



0
(€ =upue ‘0 =0 ‘T'0=25 ‘T'0=V ‘GE°0 = "} ‘700°0 = & ‘0y = W °'SS2UIITIS

Bugpuag asyupaoy) pue JuswsdeTdsTq drl-8urM Apedig Jo UOTIdUNY v se padds 293INT4  HI-4 FUNOIJ

dilf g
Cm

ga

FYRTTL T

L CTRRP

oo

Y



o)
(€E=0 ‘T'g=5 ‘T'"0=V ‘6T0= T ‘90°0=d ‘0% = W)

*SI3POK  10A Pu2 1A 2yl 3urs) punojg spaadg 1313n7J 337-018Z jo uostiedwo) Ci-4 FUNIIA

4

‘000t ‘00t ot L

ﬂJ TT T 1 1 T T 4 T T T T ﬂ_ T T T T ¥ T

gousle =3/
0=0 ‘LA

6S1°L =3n
0=9

1 434
1zs'8 =n
¥0 =D

R e T e e T ca—tr s —aiesirtr. S— et e i oot St st i .
66¥£5°'8 = 9N \
¥0=2 ‘1A

89



B Tt nro IR LR SUU TS B 3 BT R U T T e e p ey e

i mepem e enep ot AL

Chapter V

THE DETERMINATION OF AERQELASTIC MODES FOR ARBITRARY VELOCITY

[T

- A. Incompressible Strip Theory Airloads for Arbitrary Moticn

The procedure for determining flutter velocity developed in
Chapter IV has several drawbacks. It requires a matched point analysis
in which an estimated velocity Ue used to calculate steady deflections
Has to be iteratively matched to the lowest calculated flutter speed

UF for the proper structural damping. Consequently the solution for

PRIRIr T2 R R AR L SR A

& stability boundary over a range of lifting conditions can be lengthy.

Furthermrre, intermediate computations have no physical significance

and are »f limited gualitative value. The behavior and degree of

stability of individual aeroelastic modes, which becomes more inter-

esting with the addition of the fore-and-aft bending degree of freedom,

SRS Ll < TRF R T

has proven to be difficult to deduce from the V-g solutions. The

only quantitative information available pertains to the neutral stability

conditions found for the mode which experiences flutter.

Hom

We would like to have physically meaningful information regarding

N dynamics of the system at any desired speed. That is, we would like

. to know the complex eigenvalues of the aeroelastic modes at subcritical
and supercritilcal velocities. Obviously a major drawback of the V-g
method is its dependence upon simple harmonic air leoads.

Several solution procedures were studied, which replace the

Fourler transformation with respect to t by Laplace transformation

. with respect toc t and obtain at least an approximation to the modal

stability below and above the flutter velocity. The p=k method, a
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British flutter analysis technique (Ref. 8), uses the same simple
harmonic airloads but assumes that these lcads are approximately com-
plex eigenvalues s = 0 + 1w , where w 1s the frequency used in
calculating the airloads and [g] << |m1 .

Another approach, commonly applied in helicopter blade stablility
analysis, involves use of quasisteady aerodynamic theory by assuming k
is small enough to permit C(k) ¥ 1 . Laplace transformation of the
éystem then yields only linear and quadratic terms in s . Linear
matrix techniques can then be used in determining the roots. This level
of approximation neglects entirely the effect of the unsteady wake upon
the circulatory airicads and is not aprropriate for the magnitudes
of reduced frequencies observed in many flutter calculations by the
V-g method.

A third possible course is to apply an augmented-state method,
which approximates the actual unsteady aerodynamic loads for arbitrary
motion with a transfer function relzting airfoll displacements to loads
having a rational Laplace transform, resulting in a linear matrix eigen-
value probtlem for the aercelastic modes. Goland and Luke (Ref. 9)
used this route to study wing bending-torsion flutter. They adopted
the R.T. Jones (Ref. 10) approximatinn to the Wagner indicial 1lift
function to express unsteady airloads in rational form, taking the
Laplace transform in time. In addition to their accurate description
of the basic btending-torsion aercelastic behavior at all flight speeds,
Goland and Luke demonstrated that the severity of flutter cannot be

reliably inferred fyom solutions by the V-g method.
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Each of the techniques mentioned above attempts to gain information
about aeroelastic modes whose elgeanvalues have nonzerc real parts. The

true effect of the unsteady wake on the aerodynamic loads for arbitrary

motions is approximated to varying deprees. This is done quite well

for most motions in the case of augmented-state methods, marginally
in the p-k method, and not at all in the quasisteady case.

For present purposes all of these schemes were rejected in favor
of the more exact approach developed by Edwards (Ref. 11*). An impor-
tant contribution of Raf. 11 (adapted from Scars, Ref. 21) is the
definition of a generalized Theodorsen funetion to represent the exact
circulatory two-dimensional incompressible unsteady airloads in the

Laplace domain for arbitrary motions. The generalized Theodorsen func-

tion is expressible in terms of the modified Bessel functions of complex
argument Ko and Kl as
K, (s)

(5-1) C(s) KD(E) + K, (5)

where

Although previcus investigators had recognized that this form was
convergent for the right half plane, representing divergent oscillatory
motions with Re(s) > 0 , the restriction on the integral definitions
of the modified Bessel functlons caused some investigators to believe

that convergent oscillatory motions (s in the left half plane) could

*
See also Milne (Ref. 22),

93

o | PEOND U NTUD T bostb B M GG 41T A Ao il

AR

W i 18

| i RS Rt ¥ (ATRET R S e



not be so represented. Edwards observed that KO(E) and Kl(g) are
defined and analytic throughout the s-plane except for a brarnch point
at the origin. Wien one places a branch cut along the negarive real
axis, C(8) can be shown by analytic continuation to relate circulatory
loads and displacements throughout the s—-plane except along this cut.

It is, in effect, an "aerodynamic transfer function' in the Laplace
domain.

With substitution of s = ik in (5-1), the familiar Theodorsen
function of reduced frequency for simple harmonic motion is recovered.
Although arbitrary motion is now being considered rather than simple
harmonic metion, the two approaches yield similar forms when the initial
conditions arising in the transforms are neglected. In fact, the simple
harmonie airloads (4-18) and (2-3) can be used for arbitrary unsieady
motion simply substituting €(s) for C(k) and s for iw .

The modified Bessel functions are computed from their ascending
power series expansions, as mentioned in Ref. 11 and described in
Appendix B. Since the transforms of aerodynamic loads will be multiple-
valued functions because of the branch point of C(E) at the origin,

the convention
- < Arg(s) < I

is used for the cut on the negative real axis. The generalized
i8

Theodorsen function is computed by Edwards in the form C(¥e ") for
representative values 0 < 6 <1 . It is shown to approach 1 as

T+0 and % as r > = for all 6.
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With the abllity to compute unsteady two-dimensional incompressible
airloads for arbitrary motions in hand, the simple harmonic stability
analysis developed in Chapter IV can be generalized for this case. All
of the true aeroelastic eigenvalues and eigenfunctions can be obtained
for any prescribed speed Ue . Stability can be displayed with root
locus diagrams. The solution technique is developed in the following

section.

B. Solution for the Aeroelastic Roots by Means of Assumed Modes

Formally, the procedure for developing the medal equations needed
for the true aerocelastic modes throughout the complex plane begins with
Laplace transformation of the linearized equations of motion (3-25),
The transformed perturbation displacements are then expressed as series
expansions in the assumed modes as

n
w ly;s) = L £ (y)q._ (s)
1 fe1 ‘wi Wy

n
(5-2) v.ly;s) = L £ (y)q_ (s)
1 i=1 Vi Y4

n
d,.(yie) = I £, (Yq, (s)
1 1=1 ®3 7 0y

A system of homogeneous, linear, algebraic equations in the generalized

» 9 s a
vy Yy
mathod, as befere. Nontrivial solutions are given by the zeros of the

displacements a can then be derived by Galerkin's
determinant in s . Since thke coefficients in thils determinant which
arise from the aerodynamic loads will cuntain the nonrational function
C(s), this will not be a polynomial eigenvalue problem. Roots

s = ¢+ iw will thus have to be obtained by iteration.
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Since full development of the modal equations is analogous to that
for the simple harmonic case, the stability determipant in s will
simply be constructed directly from the modal equarions for simple
harmenic motion defined by {4-12), (5-1B), and (2-3). One replaces iw
by s, ik by s, and eliminates g . The elements of the aerodynamic

matrix given in (4-18) for simple harmonic loads become, for arbitrary

motion,
¢ Y " =17
0 (i£3)
Q,142n =L, - AT,
Qjm,i = (l - L )‘1 (i-.:i)
] (i)
— -— 1 -
(5-3) < Qin, 1420 = [Lp = - T+ AALLDIT 0
(15i%n) aj+2n,i = - (ﬁw - Aiw”ij
(1=j=n) _ _ _ _ 2 -
Qpan, tr2n = § 5y = ALy + M) + 47 1) (1=3)
0 (i#1)
Vg, =0 for 1<V <n
in which
T =1+ 88
W s )
L, =% #deze@) + 2 82
(5-4) ° s
M =5
w
 o=3.31
M¢ 3+ =

96



These aerodynamic loads are based on the assumptions discussed prior
to Eq. {4-13).

With the same mass and stiffness wmatrices M and KS illustrared
in Fig. 4-3, and the aerodynamic matrix Q whose elements are defined
by {5-3}, the matrix form of the iwodal equations in ¢ becomes

GL
(5-5) (M) + (@D + 55z K IHAE) = 0

(5-5) may te compared with the simple harmonic form (4~19). It is

convenient to define a dimensionless Laplace transform variable

- J
(5-6) p = st ET;

which is related to the reduced Laplace transform variable through the

dimensionlass velocity by

3-8k
(5-7 s =3

o

The stability determinant thus takes the form

(5-8)  |p*(IM) + @D + [K ]| =0

Zeros of this determinant will yleld 3n exact roots for the aero-
elastic modes in terms of the 3In assumed modes. These roots describe
modal frequencies and stability at the speed Ue used to calculare the
steady-state deflections which enter as coefficients in the stiffness
matrix.

A computer program was developed to locate numerically the zeros

of the determimant (5-8); the logic is outlined in Fip. 5-1. This
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format proved to be quite convenient for constructing root locus
diagrams having either the speed U , the root angle of attack o ,

or the drag parameter C as the changing parameter. Any of the impor-
rant aeroelastic modes, at any degree of stabilitv, could be traced
through the complex plane as long as the irisial guess of s was
sufficlently close to its particular root locus.

Since the determinant order is 3n and n > 2 is desirable to
model adequately the physical system, numerical expansion of the
determinant was not practical. A library subroutine, employed to
calculate chg complex determinant, proved to be the source af numerical
difficulties. It was found that for 1 <n <4 and o =0 the
Fig. (5~1) program gave accurate rezults when compared to parallel
V-g method neutral stability computatlions, agreeing to at least seven
digits in flutter speeds. For n =2 and o # 0 , which gives rise to
steady deflections due to lift, similar good agreement was encountered.
But for n >3 and o # 0 , the program converged on zeros which
did not match the neutrally stable V-g predictions and were obviously
incorrect from a physical standpoint. Subsequent investipation revealed
that the nuwmerical difficulties originated im the library subroutine.

When o = 0 the fore-~and-aft bending degree of freedom is dynami-
cally uncoupled, and the order of the determinant which was actually
computed by the library subrourine was reduced to 2n . Thus, for
n=3 and & =0 , the actual computed determinant was of order 6,
whereas for n =3 and a # 0 the order was 9. Tor the latter case
8

the actual magnitude of computed determinants was often 0(10l

n

while for a =0 the n =3 determinants 0(1010) . For n=2
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and @ = 0 determinants again were 0(1010). The magnitude of the
computed determinant thus appears to be related to the numerical
difficulties. Since n = 2 results are judged to model the problem
adequately and never encountered numerical problems, correction of the
sbove difficulties was not pursued.

As a result, all root loci shown hervein for steady lifting condi-
tions involve n = 2 . As will be discussed, however, this vestriction
does not compromise the wodeling of the physical system nor pravent
qualitative understanding of its behavior. Furthermore, numerical
results always agree reasonably well when compared with V-g computa-
tions for n=3 , a # 0 .

The algorithm used to estimate the zeros ¢f the determinant in
the s plane, using an initial guess Eo , is illustrated graphically
in Fig. 5-2, The complex determinant is first calculated at 50 and
at the two related points Eo + .001 and ;o + i.001. Points A and €
are then determined, at which linear extrapolation in the two orthogonal
directions predicts that the real part of the determinant will vanish.
Similarly peints B and D are predicted, for which the imapinary part
vanishes by extrapolation. A new guess for the root 51 is then
determined as the intersection point of dashed lines in the figure.

The process is repeated until satisfactory convergence is realized.

This simple scheme worked quite well and never falled to converge on a
root, usually within four or five iterations. The convergeance criterion
used was generally l]§l| - IEOII < 1070 . Typical performance of the

algorithm is documented in Table 5.1.
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C. Mode Shapes for Aeroelastic Modes

The mode shapes associated with roots determined for arbitrary
mocion by the determinant iteration merhod were conveniently calculated
with the same linear eigenvalue routine appiied in solving the simple
harmonic stability problem. For a roat computed by iteratior, the
nonrational aerodvnamic terms containing C(s) 1in the matrix O
can be immediately evaluated. Thus one is led to a couventional matrix
eigenvalue problem, which cotaing the same root as one of its eigen-
values and also provides its eigenvector. This approuch worked well
and, us a bonus, verified the accuracy of the roots computed by the
determinant iteration scheme.

Since numerical difficulties were encountered with the determinant
evaluation routine for n =3 and a o 0 , this eigenvalue approach of
rechecking its vesults for n =2 , 22 # 0 {and for all n with o = 0)
is valuable. It offers the only means of verifyinrg computed roots
lying off of the iw axis. Correlation to at least six significant
digits was always observed. Moreover, the accuracy of the n = 2 |
a # 0 determinant iteration solutions has been checked for a few
representative cases by letting =n = 3 in the eigenvalue routine, with
the known n = 2 root as a first guess to evaluate the aerodvmamic
loads, and irerating until the true n = 3 root is obtained. Two
cases for which this was done, together with their elgenvectors, are
shown in Table 5.1, where n = 4 roots are also given. The n = 2
results obrainable by the determinant iteration routine are thus seen

to be acceptably accurate even for the higher frequency mode.
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D. Inclusion of Unsteady Chordwise Loads Due to Leading Edpe Suction

Since motion of rhe wing in fore-and-aft bendine is permitted,
unsteady chordwise loads cew participate in the dynamic stability
problem. Unsteady two-dimensional incompressible airloads given 1in
Eqs. {4-18) and in (5-3) are stricrly based upon the assumption that
the instantaneous resultant unSteady 1ift on anv airfoll section along
the span is always perpendicular to the direction of the free stream
velocitv, Two-dimensional incompressible potential flow theorv, however,
does predict an unsteady leading edge suction force which arises from
the inverse squal?2 root singularity of the vorticitv distribution along
the airfoil chord at its leading edge. This effect will be included
into the analvsis within the framework of rhe linearized unsteadv per-
turbation theory used to determine stability. The effect of the unsteady
propulsive force on stabiliry can chen easily be isolared by comparison
of roots computed for the (4-18) airloads directly with roots determined
with the airloads derived in this section.

The existence of a leading-edge suction force due to the leading-
edge singulariecy was determined by Von Karman and Sears (Ref. 12).
Greenberg (Ref. 13) in developing the propulsive force on an airfoil
in an escillating stream, states that a propulsive forie acting on the

airfoil in the upstream direction.

_ 2
(5-9) Fs = HOCF

arise; from the unsteady vorticity distribution which behaves at the
leading edge as

2

_CF

(5-10) ¥ i a——
¥+ =1 Vi ¥XHix = -1
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Iz this application the coefficient CF will cortain contributions
{rom the superposed vorticity distributions due to the steady and the
unsteady lifring flow fields. Therefore CF will be a sum of steady
and unsteady parts, and Ci will involve a steady portion, a linear
unsteady cross multiplication part, and a nonlinear quadratic unsteady
term. In the context of the linearized unsteady perturbation approach
to stability analysis, only the cross multiplication term will enter
the dynamic equations. To include consistently the nonlinear unsteady
propulsive force effect on stability, the nonlinear structural coupling
Lerms Aiscarded during linearization would have to be reintroduced.

As a consequence of linearization, the unsteady propulsive force
¢an be included only when both steady and unsteady vorticity distribu-
tions are present. Thus the case of zero steady lift will have no
contribution due to this effect to the state of stability. The effect
will become increasingly pronounced as the steady lift is increased.

Tie vorticity singularity strength C in (5-9) was given by

F

Garrick (Ref. 14) for an airfoil oscillating in a uniform stream as

(5-11) Cp = VI5 {[h + Vo + ba(-a)16(k) - b}

with h positive downward. Converting to present notation, introducing
the generalized Theocdorsen function, and introducing superposition of

steady and unsteady deflections gives
o +a+ ¢0 + ¢1

h + - wo - wl
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(5-12) = /25 {46 )V + [-u, + &,V + b(ra)d, 1C(3) - 4bé, }
The propulsive force Fs , using (%5-9), is
(5-13) F o = ZHob{(cu+¢o)2 v2 4 2v(u+®o)[(—;.-l + ¢,V

+b0ra)6)C(E) - Bé, T + [(=0) - 6,V + b(4ra)d)C(3)

The last squared term is the nonlinear time-dependent contribution and
is neglected hereafter. The first squared term is the propulsive force
on a flat-plate airfeoil at incidence in steady flow. The resultant
steady aerodynamic force should act at right angles to the free stream
velociry in potenrial flow, and this steady propulsive force can be
interpreted physically as the component which tilts the resultant lift
vector, obtained by summing the pressure distribution at right angles to
the chetrd, forward to become normal to the airstream.

The propulsive force can thus be seen to correct for the chordwise
component of the 1ift which is compuced normal to the airfoil cherd.
The assumption incorperated into (4-18) that the unsteady circulatory
lift acts at right angles to the airstream must be discarded and the
force assumed rather to be normal to the chord of the airfeil in its
steady-state orlentation. The assumed direction of forces i3 shown in
Fig. 5~3.

In the structure axis system, the loads are
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=« ¥ cos¢ + L sing
Xy 8 o n o
(5-14)

- + F 3
7y Lu cusmo ]S Qin¢o

The following assumptions sre made

0 1
c s¢o 1

2]

sin¢0 @D

P osing << L1
(&) 4

so that

=
i
=l

a

=
n

- Fs + Ln ¢o
The 1ift for arbitrary motion in time 1s piven hy Ref. (5) as
(5-16) L, = 2lobV[= w, C(3) + ¢, V C(5) + b(*-a)e, C(5))

. 2 -.. a - (13
+ Moeb“[ vy + V¢1 ba¢1]

Cowbining (5-16) and the linear umsteady part of (5-13) into the second

of (5-13) yieclds

(5-17) Fxl = ~4llgvb(a + Y6 ) (- &1 C(E) + ¢, V C(&)

+ ((ra)CE) - Wbe,] + Mob3vg_b,

2 -nt - _ ." .
+ Mph d:){w1+ V¢;1 ba¢>1_|
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The loads can now be arranged inte the unit generalized force
format of (5-3) by Laplace transformation in time, substitution of the
assumed modes as in (5-2), and formation of the generalized forces from
relations such as (4-11). After this work, which is straightforward,
the elements of the aerodynamic matrix which incbrborate the linearized

unsteady propulsive force are

(5-18) 6j+n,i = 2(1—iw)a 83
— n °
* (Z—L")wiﬂn"” o, (1si<n)
(1<}sn)
6j+n,i+2'n - 2[f,¢ - k- % + A(l’i‘w)”ji @

4 _ n
S1 -2 4qIoal Loy
s W

. ql
V=m+] Jvi ¢v

The remainder of the terms of the aerodynamic matrix remain the same
as in (5-3).

Prior to actual calculations a further approximatior is made.
The terms in (5-18) which depend on sums of q&v are neglected,
eliminating the need to'compute the Yivj . This is equivalent to
assuming that the lift La in Fig. 5-3 1s aligned with the z-axis and
that ¢o is neglected relative to o inm the linear term of (5-13).

Strictly, this simplification will alter the results somewhat, but it

is not expected to change the overall effect «f the propulsive force
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on stability and does simplify computations. The first order trend of
the effect of 100% leading edge suction on stabilicy is the main point
of Interest and should not be affected.

The changes made to the aerodynamic matrix are therefore substitu-

tion of the terms

(5-20) Qim,p = {2Tpa =)
0 (i#3) (l<j<n)
Q =210 2 = (l=igm)

for their counterparts in (5-3).

The program described in Section B includes the optien of using
either of these unsteady aerodynamic force systems, and a comparison of
their relative effect on stability is made in rhe next chapter. Except
for the «'% term in the seceond of (5-20), incidentally, the newer

system simply involves doubling the magnitude of the terms in (5-3)

that are replaced.
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40, P
C=0,1U-=6.5

L}

0.005, i = 0.25, A=0.1, §

0.1, T=25, 0=0, n= 3,

TITERATION s DETERMINANT AT s
0 ~0.072968 + 10.0582071 0.326x10° + 10.1265x1010
1 -0.078290 + 10.067052 -0.259%10° + 10.504x10"
2 ~0.079541 + 10.065839 0.106x10% + 10.504x107
3 -G.079527 + 10.065910 0.106x10% - 10.178x10°
4 -0.079526 + 10.065910 -0.281x10% + 10.499x10"
=40, P =002, 1 =0.25 A=0.1, 5§=0.1, T=25 a=0.02n=2,
C=0,U-=7
ITERATION s DETERMINANT AT s
11 10
0 -0.0055179 + 10.119612 0.261x10"" - 10.253x10
1 ~0.0014167 + 10.1074866 0.125:10%% + 10.428x10°C
2 0.0005501 + 10.1085285 -0.459%107 + 10.135x10°
3 0.0005027 + i0.1084861 —0.129x10% + 10.178x10%
G 0.0005026 + i0.1084861

TABLE 5.1 Performance of the Determinant Iteration Algorithm for Two
Cases, One Nonlifting With n
With o =0.02, n= 2
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STEADY~-STATE DEFLECTIONS:

n =2 n =3 n=4

o /b 1.97768 2.01496 2.019088

q;;/b 0.022566 0.023221 0.023274 M = 40

q; /b - 0.001453 0.001464 P = 0.005

;Z/b - - 0.000271 1, = 0.25

;1/b 0.003170 0.003534 0.003594 A =0.1

q3 /b -0.003563 -0.000403 -0.000407 s = 0.1

qgi/b - -0.000044% -0.000046 T = 60

qjdlb ~ - ~0.000007
q$ 0.0068192 0.0072034 0.0072456 a = 0.01 RAD.

q£; -0.0001112 0.0000129 0.0000303 C =0

q$3 - -0,0000322 -0,0000130 =7

q$4 - - -0.0000103
ROOT FOUND BY DETERMINANT

ITERATION WITH n = p = 0.03579 + 10.55875
RESULTS OF L.INEAR EIGENVALUE ANALYSTS FOR n = 2, 3, 4:
= ?.35795 + 1.55875 E = ?636828 + 1.52903 2 = ?636486 + 1.52309
7 AMPLITUDEAf PHASE AMPLITUDE! PHASE AMPLITUDE% PHASE

Ewlfb 4.2245 :215.ao° 4.6573 | 217.75° 4.7497 {7218.17°
ﬂWZ/b 1.2064 |-40.51° 1.1808 : -37.53° 1.1815 | -37.07°
ﬂ“a/b - | 0.03432 | -18.25° 0.03544 ! -17.97°
qW4/b - [ - | 0.00530 ‘ -12.46°
av /b 0.083839 | - 7.71° 0.87304 | - 8.79° 0.88887 | - 9.12°
Ev /b 0.05128 : 181.23° 0.05146 | 181.49° 0.050487) 181.93°
Ev /b - | 0.009128 | 169.96 0.009314 | 169.12°
EVZ/b - - 0.002135 | 165.92°
2¢1 1.0 | 0.0° 1.0 : 0.0° 1.0 | 0.0°
3¢2 0.05780 : -33.85° 0.07738 | -30.30° 0.08213 | -29.93°
%o, - 3 0.02511 } -19.79° 0.02969 | -18.96°
q¢a - } - l 0.00912 { -22.80°

TABLE 5.2 Modal Convergence for Convergent and Divergent Oscillatory
Aercelastic Modes (see Fig. 6-24(a))
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ROOT FOUND BY DETERMINANT

ITERATION WITH =n = 2:

p = -0.216505 + 11.632293

RESULTS OF LINEAR EIGENVALUE ANALYSIS FOR n = 2, 3, 4

i
n = 23 = 31 = 4
p = -.2165053 + i1.6322931| p = -.21485 + 11.53221| p = -.21564 + i1.57794
AMPLITUDE | PHASE AMPLITUDE: PHASE AMPLITUDE! PHASE
]
Y T
Ew /b 0.02478 : 175.84° 0.02627 : 175.18° 0.025394; 174.95°
1 .
Ew /b 0.05039 | 181.31° 0.07554 | 178.03° 0.07883 | 177.63°
2
Ew /b - { ¢.02535 | 181.07° 0.02054 | 178.99°
3 |
q, /b - - 0.00047 | 159.19°
4 |
Ev /b 0.14780 ' 160.48° 0.14548 | 160.42° 0.14364 : 160.30°
1
av /b 0.04973 ! 181,88° 0.05680 | 1B1.47° 0.05937 | 181.34°
2
av /b - | 0. 000618: 122.60° 0.000565 | 242.35°
3 | I
/b - - 0.000081 ' - 6.87°
vy | | |
1, 1.0 | 0.0° 1.0 I 0.0° 1.0 | 0.0°
e | .
1, 0.20484 | 175.75° 0.18586 | 175.28° 0.18223 | 175.24"
2 .
§¢ - | 0.05215 | 176.65° 0.05252 | 176.50°
3 | I
- - 0.01955  177.66°
q¢4 i E I
i i

TABLE 5.2 CONCLUDED
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CONFIGURATION:
M-Pa iagﬂ»s T

| ASSEMBLE [M ] J

)
| INITIAL GUESS FOR & |

SPECIFY FLIGHT
CONDITION: a«,C,U

!

SOLVE FOR STEADY
DISPLACEMENTS

!

[ ASSEMBLE  [K_) |

v
EVALUATE [Q], THEN
THE DETERMINANT AT:

(1) 8 -
(2) s + .001
(1) § + 1,001

4

GRADIENT SEARCH

ALGORITHM MAKES

A NEW ESTIMATE
FOR 3

!
< HAS 5 CONVERGED 7 >—ro

YES
4

| wrItE p = 5V |

SAVE § AS
FIRST GUESS 3

FOR NEXT ‘ NO LAST FLIGHT
%, C,U CONDITICN ?
YES J
y

D]

FIGURE 5~1 Flow Chart for Locating Zercs of (5-8)
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Chapter VI

AEROELASTIC MODES USING AIRLOADS FROM INCOMPRESSIBLE STRIP THEORY

A. The Effect of Steady Drag on Flutter of a Nonlifting Wing

Before considering steady-state deflections due to 1lift, a thorough
understanding of the stability behavior of the cantilever wing at zero
steady 1ift is needed. With LR and ¢0 at zero, the fore-and-aft
bending degree of freedom is dynamically uncoupled from vertical bending
and torsion motions, and the system analyzed in Ref. 1 results. In the
zero lift case, then, solutions for stability involve 2n aeroelastic

nodes consisting of coupled motions in w and ¢l ; the remaining n

1
modes represent uncoupled free vibration in each of the assumed modes
in vl . As demonstrated in previous chapters, the flutter conditioms
obtained by this assumed mode analysis compare favorably with Ref. 1
results over all practical combinations of the parameters M , P , iu R
A, S, and C . Owing to this good agreement, the results and conclu-
sions of Ref, 1 apply here as well, yet the assumed mode solution method
still is useful in providing additionmal insight into the flutter behavior
of the nenlifting wing.

The parameters M , im , A, and § offer no suprising effect,
and most importantly here, the nature of their influence is not altered
by the inclusion of drag. The Ref. 1 results indicate that an increase
in the elastic axis - A.C. offset given by A is destablizing, an
increase in the sectional C.G - elastic axis offset given by § is
destabilizing, an increase in the radius of gyration parameter ia is

stabilizing, and that the flutter speed is approximately proportional

to the square root of the mass ratio parameter M . Since Ref. 1
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establishes that the influence of drag is not sensitive to these four
parameters, more detailed study in this area is not considered here.

The most curious finding of Ref. 1 involves the effect of C in
conjunction with the aspect-ratio parameter P , which is the product
of the vertical bending-to-torsion stiffness ratio with the inverse
square of the geometric aspect ratioc. The effect of steady drag on
flutter speed is stabilizing for smaller aspect ratios (larger P} .but
destabilizing for larger aspect ratio wings. The reversal of the effect
of drag on flutter occurs near P = 0.01 , and rhe hehavior in this
neighborhood, including flurter mode shapes, appears to be quite
interesting. No cenclusions regarding physical causes of this phenomenon
were made in Ref. 1, however.

Figure 6-1 is a reproduction from Ref. 1, showing the effect of
drag on flutter speed as a function of P for intermediate values of
M, ia s A, and S . Numbers in parentheses on the abucissa give the
true aspect ratio for a typical value of the ratio EIx/GId = 1,6 .
Clearly wings of practical interest include the region within which the
effect of drag on flutter appears to be most int:vesting.

To help gain a better physical understandiﬁg of the behavicr near
P = 0.01 , flutter solutions for this same example have been found via
the simple harmonic methed of Chapter IV, over the range 0.002 < P < (.02.
Results appear in Fig. 6-2 that show flutter speeds and flutier mode
shape amplitudes and phase relations as functions of P . Since a
finite chordwise to vertical bending stiffness ratio T must be

specified, and the éffect of drag on flutter depends on T as in

Fig. 4-15 the value T = 50 was used to allow adequately for the

114




T += = bhehavior inherent in the Ref. 1 formulation. Three assumed
modes in each degree of freedom are used.

The flutter speeds in Fipg. 6-2a closely match the Fig. 6-1 resulrs.
The flutter mode shapes include participation by the three generalized

displacements , and q, with the remaining assumed modes
2

o 7 Ty -
contributing negligibly to the motions. 1In Fig., 6-2b the amplituda and
phase of the two assumed bending modes at flutter are shown for unit
magnitude and zero phase angle of the first assumed torsion mode.

It can be seen that for any C the sharp drop in flutter speed
that comes with decreasing P 1is accompanied by a sudden change in the
flutter mode shape. The amplitudes of the two bending modes merge, and
the second bending mode undergoes a larpge phase shift. Further decrease
in P gives a gradual separation of the assumed bending mode amplitudes
with the fundamental mode again becoming dominant.

To help visualize the phvsical appearance of these flutter mode
shapes, phasor diagrams of the spanwise distribution of bending displace-
ments, for C = 0,02 , are given in Fig. 6-3 for five values of P .
Arrows depict the modal generalized displacements from Fig., 6-2, and
the curves give the relative displacements along the span and their
phase referenced to q¢1 . For beth P =20.02 and P = 0.002 alil
stations are nearly in phase and the mode shape is dominated by the
first assumed bending mode. But for the intermediate values of P ,
where the transition in phase of the second bending mode takes place.

the displacenents at different locations along the span can be over 90°

out of phase.
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The behavior of flutrer modes in this range of P offers the
greatest discrepancy found between the resules reported in Ref. 1 and
the assumed mode soluticn, suggested by Fip. 2-1. For P < 0.04 in
Ref. 1, collocation at only five spanwise statlons was used, and the
mode shapes in bending and torsion were permitted to have spanwise phase
differences. It was found, however, that these phase differences never
exceeded a few degrees, in contrast to the results presented here.
Possibly the use of only five spanwise collocation peints did not allow
enough freedom to represent the flutter mede shape transition found
using assumed modes. In any case good agreement between flutter speeds
and frequencies is still observed for the two methods.

Figure 6-2 seems to indicate that the second assumed bending mode
plays a significant role in the reversal of the effect of drag on flutter
near p = .01 , which coincides with the natural frequency of this mode
crossing the flutter frequency. Interaction of actual aercelastic modes
is masked bv the limitations of the solution method, however, which only
gives neutrally stable solutions. In order to better underscand these
results, the Laplace transform approach of Chapter V is used to allow
tracing ail of the aeroelastic modes in the complex plane for speeds
from zerc into the supercrvitical range.

Figures 6=-4(a) - 6-4(h) give root locus diagrama for increasing
speed at eight representative values of aspect-ratio parameter P .

Each locus originates for U =0 at one of the notmal modes of free
vibration of the structure, which are easilv calculated in terms of the
uncoupled assumed bending and torsion modes. Zero drag branches are
shown in all of the figures, with loci corresponding to C # 0 added

where their behavior differs significantly from chat for zero drag.
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The first two figures represent stubby low-aspect-ratio wings, for
which the strip-theory aerodynamic assumption is certainly inadequate.

Due to the manner in which the Laplace variable p is nondimensionalized,
the predominantly first tersion normal mode of free vibration remains
essentially fixed on the iw axis near 1.6 on all of these diagrams.
The predominantly bending normal modes move down the iw axis as P
decreases, since their natural frequencies decrease relative to the
torsion frequencies. In Fig. 6-%{a) the bending branch of the aero-
elastic modes leads to flutter, whereas in Fig. 6-4(b) the torsion

branch eventually becomes unstable. The normal mode having the third
lowest natural frequency, predominantly the second bending assumed mode,
occurs well up the iw axis and off rhese two diagrams and has negligible
influence on flutter. These low-aspect-ratic cases show entirely two-
degree-of-freedom behavior and closely resemble the root locus given

ty Edwards (Ref. 11) for a typical section in plunge-and-pitch motion

in incompressible fiow,

Figures &-4(c) and 6-4(d) represent values of P ﬁust above the
‘condition where the effect of drag on flutter reverses. Alrhough the
flutter phencmenon is still similar te that for larger P , the third
normal mode frequency has now decreased sufficiently to appear on the
diagram, and it produces a branch which does not lead to flutter for all
values of drag.

According to the flutter curve of Fig. 6-2, for P = 0.01 the
cases C = 0,02 and C = 0.04 result in decrease of flutter speed
from the zero-drag condition whereas for C = Q.01 it is still increased.

Figure 6-4(e) gives the P = 0,01 root locus, which reveals that the
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aeroelastic mode emanating from the predominantly second bending normal

mode now plays an important role. The next illustration, Fig. 6-4(f)

with P = 0,007, gives this branch as becoming unstable for all C .

In the final two of these illustrations, with P = 0.005 and 0.002 ,
the flutter phenomenon appears to be returning to the type of behavior
seen for small-aspect-ratio wings, with the second bending contribution
assuniing a lesser influence. 1In Fig. 6-4(h) a fourth normal mode, the
third bending mode, has made its appearance but does not noticeably
influence flutter.

The nature of the aeroelastic modes on the various branches of the
root locus diagrams can be clarified by looking at their mode shapes.

In Fig. 5-5, phasor diagrams are used to show C = 0 mode shapes for

i gach branch of the .005 1locus (Fig. 6-4(g)). At selected speeds both
subcritical and supercritical, the generalized displacements are shown
with the phase angle of qd)1 taken as zero.

The dependence of drag's effect on flutter upon P 1is alse given
for a second configuration having a smaller mass ratio M = 9.4 |, more
representative of light aircraft and sailplanes. Shown in Fig. 6-6,
the basic behavior resembles the first configuration, with certain
differences. For example, the reduction in fiurter speed by drag for
small P is moderate relative to that for the larger mass ratio; this

; is also seen in the tabulated Ref. 1 results. Also the tramsitioa as
P reduces through the 0.0l region is much less severe. Again the
reversal coincides with the crossing of the second assumed mode frequency
below the flutter frequency.

In conclusion, assumed mode results attr?bute the reversal of tﬂe

effect of drag on flutter speed to the interaction of the structure's

!

(]
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recotvl naturdl bending mode with the basle cantilever wing flutter
wochanism {avolving the first bendiag and flrst torsion modes. The
exact reason chat drag Increases the fluttet speed for P above this
apparent "resonance” condition and decreases Lt for smaller P 418 not
evident In these results, and like many aeroelastic phenomena may not
have a simple physical explanation, Tt does appear, however, that the
drag force enhances the coupling of the second bending mode into the
flutter bebavior and thereby magnifies its alrveady present effect on
flukter speed.

Since the Ref. 1 tabulated resalts give o fairly complete pileture
of flutter of the nonlifting case in the presence of steady drag and
are nat disputed by current results, furiher work herein is directed

towards the more general case involving steady deformations due to 1ifc.

B. Effect of Steady Deformations Due to Lift

The good agreement in prediction of dynamlc stability between the
current apnalysis and the Ref. 1 collocaticn method for nonlifting wings
with a steady deag force Included furnishes confidence that the wodal
scheme wili be suecessful for steady lifting condicions, The effect of
steady deformations due to Llife 1s dncorporated into the dynamic
atablility analysis by rhe same means ag the steady drag effect=- namely
through cocfficients eof thn stiffness matrix deterw!ned i a separate
twonlinear solucdion For the ateady-state deflections, Thusg, the agreement
indicates that the scheme allowing small time dependent perturbations
about a static deflection is working properly. When steady lifting

deflections are introduced through n nonzero root angle of actack o ,



the fore-and—aft bending is no longer dynamically uncoupled.
Coupling in both elastic terms (the stiffness matrix coefficients
cantaining v, and ¢0) and aerodynamic coupling terms (arising from
unsteady aerodynamic force components in the x-direction) now appeare
in the fore-and-aft bending dinamic equaticns. The 3n aerocelastilc
modes will consist of coupled motions in wl , ¢1 , and vy o
Three basic wing configurations are seiected ro illustrate the
effects introduced by steady-state lifting deformations. Parameters

M, 1 A , and S$ are taken the same as in Fig. 6-1, and aspect ratio

o ?
parameter P 1is assigned three different values 1n order to comsider
wings of large, moderate, and low aspect ratic. For large aspect ratio,
¥ = 0,005 is chosen to provide a case for which steady drag decreases
the flutter speed (Fig. 6-1). A mcderare aspect ratio example with

P = 0.02 having an increase in flutrer spe.? due to steady drag, and a

low-aspect-ratio case, P = 0.1 , are also included. For the typical

bending-to-torsion stiffness ratio

these examples correspond to actual retangular planforms having aspect
rarios of 17.8% , 8.94 , and 4 respectively. The bending stiffness
rativ T now becomes important, and is given the mominal value 25.
The essential features of the flutter behavior encountered when steady
deformations enter can be illustrated by using these basic configurations
as examples.

The flutter stability boundary for the moderate-aspect-ratic example

is shown in Fig. 6-7 for C =0 and C = 0.01; the steady beunding
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displacement W, of the wingtip is the measure of steady lift. An
alternative would be to show flutter spesds as a functiom of o , but
this ié a poor means for caomparing curves having different steadv drag
and gives no information about the elastic steady deformations. A
better way to indicate the steady flight condition would be the total

lift foree on the deformed wing nondimensionalized, for example as

L42
4EL b °
x

As can he seen in Fig. 6-8 this dimensionless total 1ift para-
meter, which depends on the steady twist ¢0(y) , varles for comstant
wingtip deflection as € changes for poilnts along the stability
boundary cf Fig. 6-7. This is because the drag force alters the rela-
tive ¢° and v diseributiens for the same total steady 1lift. But
since this effect is small, and v gives the best indication of the
magnitude of the steady equilibrium deflections, this deflection is used
to indicate thé steady lift conditicn. In Fig. 6-7, the semispan of the
wing is about 9 semichords, and steady deformations well exceeding the
limits of the moderate displacement beam theory are therefore shown.
This demonstrates that flutter solutions can be found for arbltrarily
large steady displacements and that it is a matter of practical engineer-
ing judgment to recognize when the assumptions made in the derivation

of the equations have been violated.

For C =0 Fig. 6~7 indicates that the flutter speed reduces
continuously with increasing steady 1lift until a maximum reduction of
about 137 is achleved at an excessively large deflection of 4 semichords.
The freguency at flutter reduces monotonically with LA this effect

is generally observed for all wing configurations.
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With steady drag included, the situation for the deformed wing is
not as simple as it is for the o = 0 case. A8 exhibited by the non-
linear steady deformations shown in Chapter IV, drag can greatly alter
the deformation state assoclated with a given speed and oot angle of
attack. Even more importanfly, drag gignificently reduces divergence
speeds, possibly to less than the flutter speed. This is revealed in
the stability analysis when the nonlinear steady solution blows up
before dynamic instabilities appear.

In Fig. 6-7 divergence speeds found by the linear VT determinant
(2~-29) are also indicated for aeveral values of C . Results of a
dynamic stabilicy analysis with € = 0.01 also appear. The flutter
speed for a =0 and C = 0.01 18 the single point on the ordinate
and {s greater than the divergence speed for the same drag. During the
search for a neutraily stable oscillating condition for the very small
angle of atrvack o = (.00l rad, and € = 0,01 , the nonlinear steady
displacement solution was sensitive to U {p the neighborhood of flutter
owing to the proximity of divergence. For specified larger angles of
attack, the C = 0,01 flutrer boundary is found without difficulty.

The slight lncrease in flutter speed due to drag observed for a =0
appears to be preserved in the presence of stéady dei::ormations. For
decreasing & , however, a point is reached as ¢« + 0 at which the
steady displacements are astiil nonzero at flutter. For smaller steady
deflections divergence becomes the instabllity encountered for increasing
speed. For C = 0.02, divergence was observed for all lifting conditiocns

with no flutter points found.
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As steady deformation increases from zerco, the flutter mode shape
undergoes a smooth ctransition, originating with the same zero 1ift mode
shapes shown in Fig. 6-2 for P = .02 . For zere drag, the amplitudes
of modal generalized displacements which contribute significantly to
the flutter mode are shown in Fig. 6-9, normalized to the first torsion
mode amplitude. Their phase angles relative to zero phase for q(‘)1
appear in Fig, 6-10. Participation by the first chordwise bending mode
increases steadily with increasing LA reflecting the increased strength
of the elastic bending-torsion coupling. Vertlcal bending motions are
increasingly dominated by the first assumed bending mode, and the
contribution of the second torsion assumed mode Increases significantly.

The flutter mode shapes at one steady lifting condition are presented
in Fig. 6-11 in a form giving a clearer physical description of the
motion. Above the phasor diagram (which contains the information given
in Fig. 6-9 and 6-10) is a sketch of the cyclic path traced in the
x-2 plane by wing sections at the wingtip and at midsemispan. Points
where the first torsion assumed mode is at phase angles of 0° , 90° ,
180° , and 270° are locatad. These diagrams emphasize the three-degree-
of-freedom nature which flutter can have when steady deflections are
present.

The low-aspect-ratio example (P = 0.1 and &R = 4) shows only minor
effects upon its flutter characteristics due to steady deformations, as
might be anticipated. As given in Fig. 6-12, even for the extreme
condition o = .12 rad. yielding a 1.7 semichord tip deflection at
flutter, there is ouly a 0.62% reduction in flutter speed due to 1lift.

The flutter mcde shapes (Fig. 6-12) undergo littla change, with a slight
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contribution by qvl the only new feature. Owing to these unremarkable
results, further work centers on the moderate-and-high-aspect-ratio
examples, where the effects of steady deformations and chordwise forces
are significant and interesting.

For the high-aspect-ratio example with P = 0.005 , the flutter
behavior is quite different when steady deformations enter. TFigure
6-13 shows the dependence of flutter speed upcn the steady wingtip
bending deflection for two drag cases, € =0 and 0.01 . The minimum
flutter speed in this case is over 20% below its undeflected counterpart,
but quite interestingly as L 0 the stability boundaries do not
converge continuously to their respective zero lift flutter speeds buc
approach lower points on the ordinate.

The flutter mode shapes, Figs. 6-14, 6-15, explain this new
behavior. As the steady deflection becomes small, the flutter mode
becomes dominated by the first chordwise bending mode, and as a =+ 0
this tvpe of instabilicy approaches simple free uncoupled vibration in
this degree of freedom. For moderately large steady deflection the
flutter mode shape closely resembles that for the medium-aspect-~ratio
wing, Figs. 6~9 and 6-~10.

Flutter mode shapes for two steadv-lift conditions are diagrammed
in Fig. 6-16 using the same technique as in Fig. 6-11. Relative to the
P = 0.02 example, this wing shows a greater amount of participation in
fore-and-afr bending, and a greater'contrihution from the second vertical
bending mode. This mode's contribution causes the noticeable difference
in the eccentricities of the elliptical paths traced in the x~z plane
by different wing stations. The phase relationship among q¢1 . qwl R

and q,. ~appears similar in this and other examples.
1 .
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The most noticeable effect of steady drag again is its reduction
of the divergence speed. TFigure 6-17 gives divergence speeds found by
the linear determinant (2-29) together with zero 1ift flutter speeds
for increasing steady drag for the moderate~ and high-aspect-ratio
cases, Divergence is clearly more important relative to flutter for
the larger aspect ratio.

The effect of steady drag on the dynamic behavior (Fig. 6~13)
appears to cause only slight adjustments to the zero drag flutter results
for any steady deflection. The flutter mode shape amplitudes and phase
angles show but small changes for the rather large drag C = 0.01 .

The flutter speeds fall just below the C = 0.01 divergence speed.

The stability boundaries in Fig. £€-13 do not allow for structional
damping and give no feel for the degree of stability at speeds near
flutter. To gain a better understanding of the type of instability
that has been found with steady deformations, and alsc define the over-
all aeroelastic behavior, the Laplace transform approach detailed in
Chapter V is applied to the large— and moderate-aspect-ratio examples.
The true aeroelastic modes are then conveniently tracaed in the complex
plane at any flight conditions using root locus diagrams.

Before showing the root-locus results, it is interesting to see
how stability is suggested by the simple harmonic method with nonzero
structural damping assumed. The € = 0 stability boundary of Fig. 6-13
is reproduced in Fig. 6-18, to which stability boundaries for three
values of structural damping are added. The sizeable increase in
flutter speed with g hints that the instability is not of severe

nature, and as wo becomes small the predominantly fore—and-aft bending
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motion is obviously very lightly damped. For small deflections with
structural damping included, there is a change in the flutter mode back
to the basic bending-torsion type encountered for zerec steady 1lift. 1In
spite of structural damping's stabilizing influence, there stiill exista
the possibility of a reduction in flutter speed at high load factor
Zlight conditions.

Root locus diagrams depicting the dynamic stability of the moderate-
and large-aspect-ratio-wing examples with steady deflections appear in
Figs. 6-19 and 6-20 respectively. Dashed lines in these figures show
the zero steady lift loci of roots for increasing speed, whiech are the
same as the zero drag diagrams of Figs. 6-4(c) and 6-4{(g). Solid lines
trace the elastic modes for selected constant speeds as the angle of
attack o 1is varied, and originate for & = 0 at nonlifting roots
corresponding to these speeds.

In addition to the normal modes of free vibration inveolving vertical
bending and torsion, previously seen on the iw axis in Figs. 6-4, the
first fore-and-aft bending mode natural frequency now also must be
included. This normal mode remains an uncoupled, undamped aeroelastic
mode at all speeds at o =0 , hut a family of constant speed branches
emanates from this root with steady 1ift included. 8Since its natural
frequency mvl is a factor T larger than the first vertical bending
assumed mode frequency wwl , this new normal mode lies on the iw
axis approximately at a multiple YT of the lowest ncrmal mode frequency.
This falls above the zero-lift flutter frequency for the moderate

aspect ratio wing, but less than it in the high-aspect-ratio example.
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A general feature of Fig. 6-19 and 6-20 is that as steady lift
increases from zero, one group of constant-speed branches tends to
stabilize and rapidly increase in frequency, whereas anorher lower
frequency family of root paths reduces in stabilivy and decreases in
frequency. This latter group is responsible for tiue stability boundaries
of Figs. 6-7 and 6-13. TImn the high-aspect-ratio example, they originate
from the lowest chordwise bending normal mode, but fer the moderate~
aspect-ratio wing they originate on the zero-lift torsion branch of the
root locus. The constant-specd branches which originate on the first
and second vertical bending zero 1lift paths, for both examples, do not
show much sensitivity to steady deflections.

To illustrate more clearly the role played by the chordwise bending
upon stabilicy, the large-aspact-ratio example is modified by increasing
the bendinpg-stiffness ratie T from 25 to 60. This raises the dimension-
less natural frequency of the first chordwise bending mode from 0.5216
to 0.9629, which is greater than the zero lift bending-torsion flutter
frequency of 0.8921. The stability boundary calculated for this modified
example appears In Fig. 6-2) and the associated flutter modes are
presented in Figs. 6-22 and 6~23. The toot locus obtained via the
Laplace transform method appears in Fig. 6-24(a) and the true stability
of constant-speed branches yielding instability is better depicted in
6-24(b) using the damping ratio T .

The discontinuity in the stability boundary is only a consequence
of the sclution procedure of Chapter IV and covers a region where solu-
tions that do exist could nor be determined. It is due to an interaction

of the predominantly second bending, stable aeroelastic mode with the
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roots that yield instability. The simple harmonic solution method
involves fixing the angle of attack & aid searching for the neutrally

" . Ko
stable 1lifting condition whose speed matches the calculated flutter
speed. In Fig. 6-21, the gap in the curve falls between points found
for o = ,0095 and .01 rad.

For all points on the left segment of the stability boundary, the
simple harmonic solution yielded an additionzl highly damped eigenvalue
whose frequency was slightly below the flutter frequency. On the right
portion its frequency was above the flutter frequency. From the root-
locus diagram (Fig. 6-24(a)) this highly damped eigenvalue can be
identified as the predominantly second vertical bending aeroelastic
mode, and the discontinuous behavior in Fig. 6-21 coincides with the
crossing of frequencies as the downward moving constant speed loci
associated with flutter pass the stable second bending aercelastic mode
frequency. By correlaiion with the section VI-A discussion of the effect
of P and C on flutter, the general effect ci the second bending mode
appears to be destabilizing when {ts frequency is just below that of
flutter, and stabiliring when its frequency is just above.

The {lutter mode shapes (Fig. 6-22, 6~23) reflect an interesting
transition as flutter frequency drops below the second bending aero-
elastic mode frequency for increasing v To the left of the
discontinuity the mode shapes resemble the zero—1lift large-aspect-ratio
Elutter behavior, to which they converze as o + 0 . For larger W
though, the modes closely resemble fluiter mode shapes for the 1 = 25
case (Figs. 6-14, 6-15) which in turn resemble mode shapes for the

moderate-aspect-ratio example. This sinilarity is most evident in q,
9

“

and q .
¢
2
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In Fig. 6-25 the flutter mode shapes are diagrammed for two lifting
conditions to assist physical visualization of the motion. The larger
steady deflection iliustration is similar to those given in Fig. 6-16.
But the smaller steady deformation mode shape, with its large contribu-
tion by the second assumed bending mode, has the wingtip rotating in a
clockwise direction about its elliptical path for a counterclockwise
mocion at midsemispan. In spite of the relatively small steady deflec-
tion (a deflection of 1.226 semichords at the wingtip for a semispan of
roughly 19 semichords) the motion is quite three-dimensional, indicating
a significant inertial contriburion to flutter in fore-and-afr bending.

The three root-locus diagrams (Figs. 6-19, $-20, and 6-24) exhibit
the basic effect which steady deflections have upon dynamic stability
when incompressible strip-theory airloads are used. The basic zero-
steady-1ift bending-torsion flutter root together with the first fore-
and-aft assumed mode produce a pair of constant-speed branches, one of
which rapidly stabilizes and increases in frequency while the other
decreases in frequency and becomes unstable for speeds below the o =0
flutcter speed. These latter aeroelastic modes are lightly damped, wnd
generally the onset of flotter at constant spesed for increasing steady
deflections would not be as severe as for that encountered with increasing
speed. The reduction of flutter speed with steady deformations has been
noted to be greatest when the first fore-and-aft natural frequency is
near to the basic bending-torsion flutter fragquency.

A better comprehension of the varicus aeroelastic modes comes from
inspecting mode shapes at both suberitical and supercritical conditions.

In Fig. 6-26, mode shapes for selected points along the U =6 and 7
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branches in Fig. 6-19, the moderate—aspect-ratio example, are shown in
phasor form. Likewise for the high-aspect-ratio wing having T = €0 .
Fig. 06-27 presents mode shapes for certain steady deflections aleng the
U=6 and 7 paths from Fip. 65-24. These mode shapes disclose that
the branches which stabilize and increase in frequency consist largely
of morion in the first assumed torsion mode, having a small qvl
contribution locked in a characteristic phase rzlationship with qd’1 of
near 180°. The branches producing instabilities, furthermore, have qvl
nearly in phase with q¢‘ and give the previously shouwn flutter mode
shapes as thev cross the iw axis. Mdde shapes (Fig. 6-27) for the
essentially second bending aerocelastic modes show the dominance of the
second assumed vertical bending mode in this branch, which remain neavly
fixed in the complex plane at a frequency close to the second assumed
bending mode natural frequency.

The role of the bending~stiffuness ratio T in flutter of lifting
wings is next examined. Figures 6-28 and 6-29 pive flutter speeds and
frequencies found for the same moderate-aspect-ratio example used earlier
compared with solutions for different values of T . TFor T = 12 the
dimensionless natural frequency of the firsr chordwise bending wmode is
0.86124, which is only slightly higher than the zero-lift flutter
frequency of 0.8332, and its stability boundary shows the most marked
decrease in flutter speed as v increases from zera. The other
extreme, T = 1000 , has a dimensionless natural frequency in chordwise
bending of 7.862Z, yet some decrease in flutter speed still occurs.

Elastic deformation in bending about the major principal axis of the

airfoil cross section should be virtually suppressed and all fore-and-aft
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motion connected with vertical bending-torsion elastic coupling. Calcu-
lations are impractical for larger T since numerical problems begin

to appear, such as convergence difficulties with the nonlinear steady
deflection iterative sclutien.

The uniform decrease in flutter frequencies as T is decreased
reflects the additional inertia from the larger fore-and-aft motions
brought about by the reduced elastic stiffness in bending about the
airfoil majeor prinecipal axis. Decreasing flutter frequencies for
increasing steady deformations likewise should be due in part to the
increasing contribution of qvl » although the increase in the relative
participation of qwl is also a factor.

In Fig. 6-30 the stability boundaries shown earlier for the large-
aspect-ratio example with 7 = 25 and 60 are compares along with
curves having T = 10, 40, and 200. The appearance is complicated by
the interaction of the flutter modes with the predominantly second
vertical bending aeroelastic mode as discussed earlier, and by fore-and-
aft bending natural frequencies sufficiently low to cause convergence
as o> 0 to speads helow the frue nonlifting flutter speed.

For both T = 200 and 60 the flutter frequencies descend through
the range of the second vertical bending mode frequency as v, is
increased, causing the discontinuous stability boundaries. The flutter
frequencies (Fig. 6-31) reflect the role of this second bending mode,
whose dimensionless natural frequency is 0.77904 and (as already shown)
a stable aercelastic mode with appreximately this frequency exists at
flutter. As mentioned in discussing the T = 60 results, these curves
zre actually continuous. but the simple harmenic solution procedure

could not produce results within the gaps.
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For the 1 = 40 , 25 , and 10 cases, stabilitv boundaries converge
to free vibration in the first fore-and-aft mode as a - 0 : their
frequency curves converge to the respective natural frequencies of this
made. In the case 1 = 40 , this frequency is 0.7862, quire close to
the second verrical bending assumed mode natural frequencv 0.77904.

This near resonance caused difficulcry in preciselv locating the neutral
srabilicty curves for small L, . as the damping became extremelv small;
of course this trouble is unimportant since even smzll structural damping
would raise rflurter speeds considerably here.

The sriffness in chordwise bending is thus a factor in the flutter
of 1ifting cantilever wings. Although stability is most adversely
affected for w, near the zero-lift flutter frequency, rhis effect

1
appears over a wide range of 1 . Higher-aspect-ratio~wings apparently

experience a greater decrease in flutter speed with steady deformations,

i

given that wv is sufficientlv near the a =40 {lutter frequency.

1
The mass ratio M is the only parameter which can change for a
specific wing, as it depends upen altitude. In Fig. 6-32 the dependence
of both flutter and divergence speeds on M for the moderate-aspect-
ratic example appears for the compleie range of mass ratios of practical
interest. Divergence speeds for several values of steadv drag together

with zero-1ifr flutter speeds for C =0 and 0.01 are compared. In

addicion zero drag flatter speeds for steadv Llift giving

Yo
Grpgp =103
are shoum for M = 10 ., 40 . and 100 . This same Iinformation is
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depicted in Fig. 6-33 for the large-aspect-ratio example excepr wingtip
deflections of 2 and 4 semichords are used.

Divergence speeds for all drag values vary exactly as /M, as can
be seen from the divergen:e determinant (2-29), where M appears anly
as a product with the inversc square of divergence speed. The ¢ = 0
divergence speeds for these twa examples are {dentical, but UD decreases
more raplidly with € for the hipher aspect ratio.

For mass ratios above about 5, nonlifting flutter speeds behave
approximately as WM. A winfimum in flutter speed is found near M = §
whith & rapilid asymptotic rise to infinity following a further decrease
in M . This reflects well known results for incompressible flow (Ref. 3,
page 247). A practical application for mass ratios sufficiencly small
to be theoretically free from flutter is the stability of hydrofolls
used in high-speced marine trangportation. Divergence would be the type
of instability encountered. This conclusion emphasizes the {wportance
of allowing for steadv drag since its effect on divergence is propor-
tionally the same for any mass ratio and the decrease of divergence speed
with € con be considerable.

Divergence is wore important relative to flutter for mass ratios
around 10 than for higher mass ratlos: this indicates a preater likeldihood
of light aireraft and sailplanes experiencing divergence. Caleulation
of divergence speeds for a high~performance sailplane appears as o likely
application in which allowance for steady drag effects would be desireable.

The effert of steady deformation on flutter appears insensitive to
M . TFor equal tip deflections, “F reduces by about the same proportion
at each of the three mass ratios in the two fipures. Tar the hiph-aspect-
ratio wing, these deflected flutter speeds correspond to the aeroelastic

mode connected with chordwise bending. as discussed for M = 40 .,
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The effect of changes in the remaining parameters A , S , and 1
has also been investigated for the steady deformed case, but no new
interesting behavior was found. Their influence at zero lift, as
tabulated in Ref. 1, 1is carried over into the deflected flutter behavior.
Stability boundaries and flutter mode shapes for increasing steady lift
show the same alterations of the baslc flutter phenomenon as is demon-
strated by the examples used here.

Tc clarify the strong influence which steady chordwise loads can
have upon divergence, particularly for high aspect ratics, the dependence
of UD upon C as aspect ratio parameter P 1is varied appears in
Fig. 6-34. The corresponding zero-lift flutter speeds for this
configuration (Fig. 6-1) can be compared directly. Unquestionably, for
higher aspect ratios (P < 0.01) drag forces typically encountered in
flight (i.e., C = 0.0025) can cause divergence to become no less

important for flight safety than primary bending-torsion flutter.

C. Effect of Unsteady lLeading-Edge Suction Forces from Two Dimensional
Incompressible Flow

Substituting the terms in (5-20) for their counterparts in the aero-
dynamic matrix (5-3) allows inclusion of the linearized unsteady chord-
wise forces arising from luncompressible potential strip theory as
deseribed in Chapter V. This effect is present only for o # 0 and
will grow as angle of attack is increased. The initial trend of stabllicy
as o 1lncreases f{rom zero should be unchanged from the results already
discussed, but at liigher steady lifting conditions leading edge suction

should have a noticeable influence.
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Figure 6-35 displays how allowance for the linearized unsteady
propulsive force affects the destabilizing, constant speed, increasing
steady 1lift branches of the root locus in Fig. 6~19, which is the
moderate-aspect-ratio-wing example. For thils case a tip deflection of
just one semichord is a very large deformation assuming a conventional
bending-to-torsion stiffness ratio Elx/GId » S8ince the semispan would
be about 9 semichords. Thus larger deflections shown are only of
écademic interest, since they exceed in practice the limits 1mposéd by
several underlying assumptlons.

Fipure 6-36 recasts the Fig., 6-35 iaformation into a better form
for inferring stability; the damping ratio of the same root branches is
plotted for wingtip deflection. Stawility 1s slightly increased when
leading-edge suction 1s added, but for practical deformarions its effect
is really not too significant. A stsbility characteristic of deformed
wings, also evident in the format of Fig, 6-36, is the reduced severity
of flutter onset with increasing speed at constant W, for higher load
factors.

Tigure 6-37 gives the manner in which the root locus for the high-
aspect-ratio example (Figure 6-20) 1is altered by allowing for linearized
unsteady suction forces. Shown is the destabilizing family of constant-
speed branches associated with the first fore-and-aft bending normal
mode. Again true stabiiity with steady wingtip deflection is also
shown‘(Fig. 6-38). Also added are the constant-speed branches which
stabilize and increase in frequency as steady deformatiomns increase.

Once again the unsteady suction force has a slightly stabilizing

influence. Given the same ratio EIx/GId , this example has twice the
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span 1ln semichords of that for the moderate-aspect-ratio example, hence
lasger wingtip deflections in semichords can be tolerated. After
allowing for this factor, the unsteady chovdwise potential forces do
not appear to have any greacer influence on stability for the larger
aspect ratio.

Figure 6-39 shows how stability of the modified high~aspect-ratio
example (having v = 60 , presented in Fig. 6-24) depends on steady
deformaticns and on the lineavized unsteady propulsive force. Comparison
with Fig. 6-38 shows a similar effect due to leading-edge suction, but
steady deformations definitely have a stronger and more immediate
destabilizing effect for the stiffer chordwise bending case. This 1is
due to the proximity of the fore-and-aft bending normal mode frequency
to the zero-liit bending-torsion flutter frequency.

Inclusion of the linearized unsteady leading-edge suction terms
derived in Section D of Chapter V is thus found to be stabilizing for
deformed wings. Aeroelastic modes involving a primary contribution by
the first chordwlise bending mode appear to be most affected by these
terms. With rheir inclusion, potential flow strip theery has been
fully exploited for this problém. and further improvement in the aero-
dynamzcs involves the compressible three-dimensional loads of Chapter

VII.

T. Two Practical Examples

The manner in which chordwise forces and steady deformations
influence the aerocelastic stabllity of cantilever wings has thus far
been iliustrated by mears of idealized examples. After one has identi-

fied the fundamental effects, it is instructive to appiy the same
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solution techniques to typical designs. Sailplanes, having large

aspect ratios, low mass ratio, and lew operating speeds (which pevwit

the use of incompressible serodynamics), are a logical choice for
practical examples, Accordingly, two existing sailplanes are modeled
within the ;pproximations imposed by the assumption of uniform spanwise
mazs and stiffness pfOperties and strip theory airloads. Their stahility
is studied using the same techniques applied hefore.

The first example is modeled from information given about the
Slingsby Dart 17R in Ref. 15, a8 summarized in Table 6.1. The approach
taken in determining the wing stiffnesses, in lieu of looking at wing
construction details, was to use photographs in Ref. 15, from which tip
deflection and twist at a load factor of 4 could be measured. The
stiffness EIx so obtained is clearly larger than would bhe expected
for the weight and type of construction; this inaccuracy is due to the
uniform stiffness restriction, the rectangular planform, and strip theory
steady airlcads. The torsion stiffness GI is more reasonable. The

d

raicio

EX
GI

turns out impractically large. This number lsads to a larger wvalue of
P than would be expected, which causes bending natural frequencies to
be larger relative to torsion natural frequencies than would probably
occur on the actual vehicle. It can be added that, had GId been
increased to compensate for the seemingly excessive EIx , then the
fluttaer speeds would have been absurdly high. Since wing construction
details were not avalilable, typicai values for the parameters A , S,

iu » and T were simply assigned.
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A different philosophy was applied when modelling the second
vehicle, the Gemini two-place high performance sallplane detailed in
Ref. 16. With construction details of the metal wing structure described
in Ref. 16, it was possible to assign reasonably aecurate values to all
six of the dimensionless parameters from a diagram of the average wing
cross section (Fig. 6-40). The percinent details of modeling the
Gemini are listed in Table 6-2.

One notable result is a much lower bending stiffness EIx than
for the Dart 17R. This result will compromise the static deflection-
load factor relationship but should favor the dynamic modeling. The
considerable difference in bending stiffnesses between the two examples
is revealed in Fig. 6-41, which shows how the true load factor (found
using the respective aircraft gross weights) varies with steady vertical
tip deflection at speeds near the expected flutter speeds. The poox
static modeling of the Gemini should not adversely affect its flutter
results, however, tip deflection rather than load factor should be used
to measure the amount of steady 1ift.

The wass per unit span of the Cemini wing was taken to be the
average for the outer two-thirds of the semispan, so as better to model
it dynamically. The mass ratio-- over twice that for the Dart 17R—-
reflects the heavier construction needed for a two-place vehicle and
the smaller average semichord. Thils design (Ref. 16) intentionally
has a higher wing loading to optimze the glide slope, with thermalling
performance improved using full-span flaps. The chordwise bending
stiffness was conservatively estimated vet still yielded a quite low

value of T =5 . The low EIx/GId ratio, together with the very larpe
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aspect ratio, resulr in the extremely small P = 0.00128 . This wing
thus 1s an extreme case in the context of the‘:xambles studied earlier.

The effect of steady drag on divergence speeds and nonlifting
flutter speeds is shown in Fig. 6-42 for the Dart 17R example and in
¥ig. 6-43 for the Gemini. For both, the divergence speed drops below
the zero 1lift flutter speed at drag values which can be realistically
expected in flight. The excessively large P af the Dart 17R model
ﬁoderates the drop in its divergence speed due to drag. For flutter
only a slight dependence of speed on C 1is found. On the Gemini, in
fact, the C = 0.02 flutter speed is only 0.28% less that for C= 0 .
Its larger S tends ro lower the flutter speed relative to divergence.

Figure 6-44 depicts the stability boundary as affected by steady
wingtip deflection for the Dart 17R. The associated flutter mode shape
amplitudes and phase relations appear in Figs. 6-45(a), (b). The
coupling effect betweer the first fore-and-afr bending mode and the
primary zero-lift bending-torsion flutter mechanism appears to be
responsible for a decrease in flutter speed with 1ift, as in earlier
examples. The corresponding root locus diagram (Fig. 6-46) reveals that
the first chordwise bending natural frequency by coincideace happened
to fall almost exactly on the zero lift flutter frequency. This
phenomenon causes the pronounced drop in flutter speed for small deflec-
tions seen in Fig. 6-44., Inclusion of the unsteady propulsive force 1is
slightly stabiliziug at large deflections, as in previous cases,

A parallel analysis of the Geminl example, given by Figs. 6-47,
6-48, and 6-49, yields a very different response to steady deflectioms.
Flutter speed decreases only slightly at representative tip displace-

ments, and rthe mod2 shape contributions from q, 9, - and q¢ show
1 "2 : 1
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almost no sensitivity to LA The chordwise bending contribution
suggests the cause, made clear in the roct locus diagram. The combina-
tion of a very small P and small T produces a fundamental fore-and-aft
bending natural frequency which is much smaller relative to the zero

1lift flutter frequency than in any example vet treated. Furthermore,

the second chordwise frequency drops to near the flutter frequency.

This second mode (rather than the fundamental) participates in flutter

of the deformed wing, vet it is not as strongly coupled elastically with
the first vertical bending and torsion modes. The aeroelastic—mode
branches associated with the first chordwise bending mode no longer

play an Important role in stability with steady deformations. Indeed

it has degenerated into a virtually uncoupled, neutrally damped fore-and-
aft vibration. The linearized effect of unsteady leading-edge suction

on this type of flutter is negligible.

Evidently, for extreme cases such as the Gemini model with a fore-
and-aft bending frequency much lower than the zero-1lift bending-torsion
flucter frequency, the lowest chordwise mode will not participate strongly
in flutter. The low-frequency root branches associated with it give no
cause for concern. Before this calculation is accepted as a definitive
flutter analysis of an existing sailplane, however, the cantilever root
boundary conditions must especially be recalled. While these results
do offer insight into symmetric flutter of the actual vehicle, the
possibility of anti-symmetric motions involving fuselage roll and yaw
is entirely suppressed. For the Gemini in particular, there remains
the likelihood that anti-symmetric vertical and fore-and-aft bending

modes may couple to produce a different type of flutter-- possibly one
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with & greater semsitivity to steady deformationsa. Although the results
here ars insensitive to both steady deflections and to chordwise forces,

steady drag unquesviunably plays a critical part in divergence.



DART 17R SPECIFICATTIONS (REF. 15):

SPAN 55.8 fr.
AREA 149 2
ASPECT RATIO 20.9
GROSS WETGHT 800 1b.
ASSUMPTIONS:
WING WEIGHT 200 1b => m = 0.1242 E%%E
AVG. SEMICHORD 1.33 fe.

FROM REF. 15 PHOTOGRAPHS:

~

(wo)TIP = 3 ft. at 4g => EIx 1,500,000 1b ft2

d

4

< 1.5° at 4g => GI, ° 340,000 1b ft2

(¢0)TIP
FROM THIS INFORMATION ONE CAN SPECIFY
P % 0.01 M~ 9.4 (sea level)
ASSUME THE REMAINING PARAMETERS
iu = 0,25 s = 0.1
A =10.1 T = 25,
EXPRESS SPEED V IN FT./SEC. IN TERMS OF U :

B A N
U= T V = 0,008432 V

LOAD FACTOR AT SEA LEVEL:

_ 4TV T2 1,
¥ e (o + jil VERS)) q¢j)

TABLE 6.1 Modeling of the Dart 17R Wing
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GEMINI SPECIFICATIONS (REF. 16)

SPAN 60.5 ft.
AREA 124 ft:2
ASPECT RATIO 29.4

GROSS WEIGHT 1065 1b.
TOTAL WING WEIGHT 400 1b.

WEIGHT OF OUTER

20 FT. - 110 1b. => m = 0,1708

ASSUME b = 1.00 fe.

PROPERTIES ESTIMATED FROM THE TYPICAL SECTION (Fig. 6-40)

EL_ 444,900 1b—ft2
61, 402,400 1b-ft2
EL 2,179,000 1b—ft°
J 0.04697 slug-ft.
a -0.4
s /n 0.2322 fe.
RESULTING DIMENSIONLESS PARAMETERS
M = 22.9 A=o0.1
P = 0.00128 S = 0.23
i, = 0.275 T=5

EXPRESS SPEED V 1IN FT./SEC. IN TERMS OF U

] J
U 3 Ei;»v = 0.010335 V

slug

fr.

TABLE 6.2 Modeling of the Gemin’ Wing
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FIGURE 6-1 Dependence of Flutter Speed on C and P , Ref. 1 Solution
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P
FIGURE 6-2(a) Flutter Speeds, Frequencies, and Mode Shapes for
Different

C as P Varies, Modal Solution of the
Fig. 6-1 Configuration
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P=.002

FIGURE 6-3 Phasor Representation of Flutter Mode Bending Displacements
From Fig. 6-2 far C = 0.02 at Selected Values of P
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. FIGURE 6-4(a) Locus of Roots as Speed Increases From Zerc to Supercritical
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FIGURE &-4(d)

151



P=.01
C Uf
0. 7.5876

01 7.3051
.02 5.B057
.04 6.1604

<0k 0

I I ] ]

-1.0 -8 -6 -4
Re (p)

FIGURE 6-4(e)
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FIGURE 6-7 Flutter Speeds and Frequencies as Affected by Steady
Deformations; Moderate-Aspect—-Ratio Example
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FIGURE 6-11 Physical Appearance of Flutter Mode of Deflected Wing:
Fig. 6-7 Configuraticn With C = 0
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FIGURE 6-19 locus of Roots for True Aercelastic Modes, Moderate-
Aspect-Ratio Example
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Aspect-Ratic Example with T = 60
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FIGURE 6-43 Effect of Steady Dra® on Divergence and Zero-Lift Flutter
Speeds of the Gemini Model
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Chapter VII

FLUTTER VELOCITY USTNG ATRLOADS FROM THREE-DIMENSIONAL
SUBSONIC AERODYNAMIC THEORY

[ 24

A, TInclusion of Three-Dimensional Airloads

The influence of steady deformations and chordwlse forces upon
dynamic stability of the uniform cantilever wing has been examined in
Chapter VI using lifting airloads predicted by incompressible steady

and unsteady strip-theory. This approximate modeling

oo B A A M BT R T A0

of the aerodynamic loads made possible thelr convenient numerical compu-

tation for any convergent, néutral, or divergent oscillations of interest,

VAL A AN

As a result, the iterative solution schemes of Chapters IV and V could

be developed and a wvariety of wing conflgurations could be analyzed
efficiently.

The accuracy with which the incompressible strip thecory results
_ approximate the three-dimensional compressible flow situation is next
| explored by extznsion to subsonic three-dimensional lifting airloads.
The simple harmonle flutter solution method described in Chapter IV is
accordingly modified to use subsonic three-dimensional steady and
oscillating unsteady aerodynamic loads calculated separately by the
¢ computer program written by Rowe, et al. (Ref. 18). Results are then
t found which demonstrate th;t the phenomenaldiscussed in Chapter VI
3 still occur after three-dimensional aerodynamics are introduced. The

3 role of unsteady potential chordirise loads in flutter is investigated
!

as is the effect of comprassibility. 3Since the use of externally

g
+

computed air loads requires a mare cumbersome solution method, only
enough results are sought to provide direct comparison with the incompres-

sible strip-theory calculations.

205




The Rowe computer program solves the pressure-downwash integral
equation (Ref. 24) for compressible flow about a steady or oscillating
planform. The kinematic downwash boundary condition for each structural
mode is enforced by collocation, at a set of user-specified points, of
the downwash distributions associated with an assymed series of pressure
funections. For this application seven collocation chords are specified
having five ecollocation points per chord. Six elastic structural modes
are input—— three in vertical bending and three in torsion. The three
torsion modes are defined for A = .1 (lateral displacements depend on
elastic axis location). A thorough description of the thecretical
aspects of the subsonic kernel function program is provided in Ref. 18,
and the programming details are documented in Ref. 19. 1Its capability
for modeling trailing=- and leading=-edge control surfaces is not required
in the present application.

The unsteady potential chordwise forces can be‘deduced from program
output, as follows. TFor each structural mode and its downwash the
program caiculates the complex amplitude of an associated distributed
lifting pressure difference on the rectangular planform, which in

dimensionless form for the jth mode is, per unit having steady or

%
simple harmonic time dependence,

AP, (x,¥) rr—r— N M
i_pvl = 3 R‘_Q,-y T I a\sg)f(")(y)g(ﬁ‘)(x)
v=1 u=l

(7—1) ACPj (XIY) =

Here aéﬂ) are coefficient multipliers of the series expansion of
pressure on the planform, which can be listed in the program output.

The assumed spanwise pressure distributions are
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(7-2) Wy - BMUBD L ng, R

(7~ ¢ = cos-l(%)

N = number of downwash chords on semispan

The assumed chordwise pressure distributions, dependent upon x only

for a rectangular planform, are

\ f
(7-4) g(u'(x) = { cot % pe=1l
sin(u-1)8 no=2,3,4,...4
(7-5) 8 = cos (- X

M = aumber of downwash points on & downwash chord

where x is measured aft from the midchord.
The resultant chordwise component of potential airloads, acting
in the positive x direction, can be expressed as

dz

- ‘t) = - Loy2 P bp) —= . - F (v:
(7-6) D (ys5t) ovE [ AC (x,yit) 57 Oeyitddx - Folyse)

The first term represents the x-component of the force, which is normal
to the defiected chord, second term contains the contribution of leading-
edge suction. It is an idealization of linearized theory, which is
supposed to approximate the actual effects of low pressure acting around
a curved leading edge.

Steady and unsteady parts of the pressure and mean-surface chordwise

slope can be separated:
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(7-1 ACp(x,y;t) ACP (x,y) + ACp (z,y;t)

[§) 1

st
(7-8) 75:(x,y;t)

- ¢D(y) - ¢1(y;t)

The first term of (7-6) will then contain a steady part, a linear
unsteady part, and a nonlinear part, as follows:

- ey = Lay? £
(7-9) D (yit) = %oV [l AC ¢ dx

o

2 (b
+ kov? [ (Acpc o, + Acpl 6 )dx

+ 15pv? /P

S AC ¢1 dx - Fs(y,t)

Py
The suction force likewise can be separated. The leading-edge inverse-
square—root pressure singularity strengths for steady and unsteady flow

can be defined,

{7-10) Cp (v) = ¥ 1in [ AC_ (x,9)]
o x>b Po

(7-11) gp (rst) =9 lim [- /ol AC_ (x,y3t)]
T, ot Py

From equations (5-9) and (5-10), ths leading edge suction force in

terms of the vorticity singularity is

(7-12) FS(Y;t) = Jl—M; %-p[ 11: (vxtb Y(x,y;t))]2
rﬁ.-

where the effect of compressibility is now included with the Jl-Mi
factor (deduced from Eq. 12-1 of Ref. ¢6). Vorticity and pressure dis-

continuity distributions in the vicinity of the leading edge are related
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e I R

l

e o SRR e s L

by (Ref. 23, Eq. (5-93))

(7-13) ACp(x,y;t) = ~ %}(X.Y;t)

The suction force in terms of the leadinpg edge pressure singularity

is, therefore,

(7-14) Folyit) = VI Mot 1im [- V590 AC (x.y;t)]}2
a 4 b P

/AT Tolcy () + ¢ (y;e)}?
1

o

/iM% rrp[c2 +2C. C. +¢C° 1,
a F F F F
o o 1 1

where (7=-7), (7-10}, and {7-11) have been used. Equations (7-9) and
{7-14) suggest that chordwise forces do affect both the steady displace-
ment solution and the linearized unsteady stability problem.

Actual computation of the suctlon force contributions can be
uccomplished through program output of the series coefficients aég)

Insertion of (7-1) into (7-10) and (7-11}, for the jth mode, leads to

the steady and unsteady leading-edge singularity stremngths

N
(7-15) ey = - vk af)i)f(")(y)]fﬁ
o v=1
—r— N
(7-16) R O IR (LAl S PO
1 vl V1

Here, in taking the limit x -+ -b , only the U = 1 chordwise pressure

distribution terms from {7-4) remaln since

209

L st e m s



W Ao s e L

(7-17)  1lim /5 g M 0] = ifs pel
x+b 0 us 1

The single summations that define the modal spanwise leading-edge

pressure siagularity strength can be arranged for computational purposes

\ ceoy _ VREy? N ) V) ‘
(7-183} Pjgg) = "= vil avlo £27°(y)

1

N
{7-19) Fy) = "2y p o) gy,
. Povr VY

This notation, together with summation over all modes, allows the total

singularity strengths (7-10) and (7-11) to be computed by

_ ; = _ o o
(7-20) cpo(y) A § ijqj

(7-21) C.. {y,t) = - 2Wh L F (y) q,(t)
¥, AL R

Insertion of (7-20) and (7-21) into (7-14) gives for the suction force

- - 2 A2 0 2
(7-22) F_(y.t) = 4lpV%b v1-M_ {[5 FL0Na))

o o 1
+25§meu%e“§w>

+ [I Fj(y) qjeimtlz}

i

The notation of (7-18) and (7-19) is next adjusted to identify the
specific structural modes involved. For the steady problem a rigid

ritching mode must be used to sclve for pressures and loads due to
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Lt e e s a0

alrplane angle of attack, and its associated singularity strength

parameter is denoted as F; . For the ith elastic torsion mode F?

¢

is used; of course, the vertical bending modes introduce no steady
1ifring loads. Unsready, leading-edge-singularity strength parameters

for the jth elastic torsion and bending wodes are specified by

¢
j
and Fw . respectively. The computatiomal form of (7-22) is then
3
(7-23) F_(y;t) = anpvzf1-M’ {[f°a + z e g0 12
"'. V= 1 ¢ ¢v
q
n W
2% [Fla+ IF ¢ 1F 1 dut
-1 @ v=l % b, b

j
r21 (Foo + Z F ag I, q el®t
3=1 1% 0 Tey Yy

1 9N n
+ [(Z F, “E'L + I
j -

=l ] =t "3 73

The x-component of the ACp-force, as indicated in (7-9), must also
be expressed in a form which permits computation. Insertion of the

modal quantities

n
(7-24) o = L £, q°
°  un tbv b,
© n [
(7-25) ACpO = ACpau + I ACp¢ q¢
v=1

n

(7-26) 9, =

T f, q
Lo %Yy

n
(7-27) tep, = s ACp,, 'Ei + T opy a,
o= j j=1 i 73
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into (7-9) leads to

n
b
7- : ;t) = 3ovi{[ I ° f °
(7-28) DP(Y;t) 5oV {[vul J:_bACpu b, dx o %
n n jb qwi
+ I 2 f ACp dx q? q? 1+ [ L E ACp £, dx qF —/—
p=1 v=1 ¢ ¢ ¢ ¢v 1=1 v=1 ¢v ¢v b
n
+ T Z f L ACp dx q] q
=1 v=1" %y L
n n n
b o 1wt
+ L [ Acp f, dxoq, + I L f ACp dx q° q, Je
g=1 B % %y ¢ g=l wml 8, foy X o, %0,
n n qwi
+[Z I f ACp f dx——gq
1=1 3=1 7P Yy %y b e,
n n
b 21wt
+ I L J Ap, £ dxq, q, le _ .
i=1 j=1 by ¢j & ¢j Fs(y.t)

where steady, linear unsteady, and nonlinear unsteady terms in the
generalized displacements are grouped together.

The chordwise integrals in (7-28) involving the steady and unsteady
modal pressures can be computed ar any spanwise station by taking
advantage of the Roqe program’'s capability to compute sectional general-

ized forces. Program output is of the form

S - S
(7-29) Qij(y) Aijxx,y)Hi(x.v)dx

b
Lb
where the deflection mode shape Hi(x.y) for all integrals in (7-28)
will be f_ (v) .

®
The nonlinear modal equations (4-9) for steady displacements must

be modified by 3ubstitution of the steady compressible lifting airloads

in place of the strip theory loads (4-3). Inclusion of the steadv
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parts of (7-28) and (7-23) will account for the induced drag caused by
the three-dimensionality of the flow. Generalized forces which will
appear in egquations (4~9a) and (4-9c) are to be computed directly, but
the generalized forces for the chordwise bending eauarions (4-9b)
involve the chordwise forces described above and must be calculated
separately. These preliminary calculations require the pressure
coefficients aéi) and sectional generalized forces Q:j obtained
from Rowe program output. Program output cf generalized forces is of

the form

(7-30) o . =2 /P A

1j o “-b j(x;Y)Hi(x,Y) dx dy

where Hi(x.y) is the ith modal displacement and Aij(x,y) the

pressure distribution per unic q_ .

Rederivation of (4-9) with three-dimensional subsonic steadv air-

loads produces the folliowing nonlinear system:

o

iOl qw MPi n n qv
(7-11a) TNy 2 —bl - (1) 2 [ I LK ay =
3 p=1 v=1 b Y
L.}
n n n qwi b n .
- T £ I R, qf qf == -5 (0] a+ IO q
pel vel fe1 1HVY6, T8, b M ‘~4,0 N
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o -]
TMPiu qv Hria n n %Ly

(7-31t) TN T ‘—b'i - {1-1) T [ & E\, a; "BE'

3 v=]l =1l i ¢'\)

(-]
n n n qVi
+ T T IR q? qf — 1
yel p=1 =y SRV O, T4, B

LT P s dax) £, (E. (dy q° o
e o L, oCp, dx] 8, y v, yldy q¢“

vml
D S Y
-opr LI LU0 Ach, (x.ydax)f, (WE (v)dy qf  q
My yey © BT ¢, vy o, o,
(1<3<n)
+ 417 {{f(F;)zfv dy + 2 g {f F; F; f dv « q;
i v=1 v Vj v
n n Q; °
+ L ZJYF, F, f dvyqd q5l1 =0
U=1 v=l ¢u ¢v vj ¢u ¢v
Mi WPi n on 0 q° a
(731c) knz(j-%)’-Tﬁi ag + (-1) —ﬁzﬁ [(Z I IR i_fx.ffg o
§ v=1 p=1 4=1 WV B A,
n n n q; q; n n q;v q;u
- L I I R..._w Ywqe -1 £ —_E
vel pel del PV TR ¢ g e ROBP
b © n ’
- + I 0 R
2T 4t2n.0 & vey i¥nuean g

- 0n°
In (7-31) the notation % s

computed directly by the Rowe program. Here 2wl sStructural medes

refars to the steady generallized forces

must be used to compute generalized forces: n iIn vertical bending, =n
in elastic torsion, and one ripid pitching mode.

Computation of the chordwise load terms in (7-31h) quicklv becomes
an unwieldy task as n 1is increased, because of the profusion of
numerical integrations that become necessary (for n = 2 there would

be 75 integrations}. In order to avoid extensive labor but still retain
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the most significant effecrs of the potential chordwise forces, the
following simplifying assumptions are adopted. First, integrals
appearing in the first {j=1) chordwise equation of (7-31b) only are
retained. Second, only the pressure distribution and slope of the first

of the elastic torslon modes are kept; terms contailning ACp; or f¢
u U

for 4 > 1 are dropped. Similarly, all cerms containing F¢ for
u > 1 are removed. This approach should preserve the first~2rder
effect of steady chordvise potential forces, vet only five numerical
spanwise integrations will be required.

Actual computation of the remaining integrals

IR

Al tepy e dxlty F, )y

1

OB acp? (xy)axlE, (M1, (Nay
o ~-b ¢ 1) v
i 1 1
is done by direct calculation of the integrals over x as sectional
generalized forces with the Rowe program at eleven spanwise stations.,
The spanwise integration is then carried outr numerically. For the

three integrals
L o 2 X
JB[FQ(Y)] fvl(y)d}

tF

L] °
. Fa(v) F“’; o f"1 (yddy

£ o vo 2
£ [F¢1(y)} fvl(y)d&'

o

the summations lmplied by (7-18) are first mwade. This step is followed

by spanwise numerical integrarion.



The nc~linear solution scheme described in Appendix C was straight-
forwardly adapted to compute steady deflections in subsonic three-
dimensional flow from (7-31). Since spanwise induction introduces
coupling among the torsicral modal equations, solution for linear dis-
placements uas an initial estimate becomes an axn linear wmatrix problem.

Eguation (4-12) vemains as the 3n x 3n linear unsteady modal
system for stability about the steady equilibrium position. Tt now
requires the generaiized force matrix to be expressed for three-dimen-—
sionnl unsteady compressible flow. As for the steady case, the
generalized forces relating pressures and displacements in the wertical
bending and torsion modes can be computed directly by the Rowe program,
with reduced frequency and Mach number specified. Direct insertion into

(4~12a) and (4-12¢) is accomplished by the simple substitution, for

generalized forces Qj 1 and Q1 i relating the same two modes,
_ b
(7-32) Q4 = 7Rz 4.1

Even more so than for the steady airloads, complete inclusion of
all linear unsteady_potential chordwise terms introduces a profusion
of integrals. Formally, the linear unsteady terms which appear in
(7-28) and (7-23) enter Into generalized forces, computation of which
involves spanwise integrations of the terms' products with fv .
Practically, simplifying assumptions of the type made for the éteady
chordwise terms have been made to keep the number of numerical integra~
tions at a manageable level. Accordingly, only the first chordwise
equation of (4-12b) will retain the chordwlse force terms. Furthermore,

only thi chordwise force integrals contalning pressure contributions
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and displacements for the q¢ > Qy
1

, and q _ degrees of freedom will
i 2
be kept. (Justification of this approximation is based on the flutter
behavior observed in Chapter VI, which revealed little participation by

the remaining vertical bending aad torsion modes.) The remaining linear

unsteady terms from (7-23) and (7-28) are

a, (t)
‘) = 2frb o _ 1
(7-33) Dp(y,t) = LoV {f_b Aprl f¢1 dx qq,l 5
q, (v
+ {R,ACp f dx q —Eg + [E:ACp f¢ dx ;1 (t)
Yt 9 0y 9y A

b b
+ [ Acps £, deoqp () + [ ACpy fodxqf qp ()}
b e gy ¢ b, e ey oy

q,. () q, (©
+ BIVAVIST (FF a—1 +FF ot
a o w b o

1 wy b

q  {(t)

W
(t) + F° F 1

+F°F aq qQ? —
ok ey ¢y Wy b D

= +F F_ q% q, ()}
¢l ¢1 ¢l ¢1
The generalized force matrix terms for inclusion in (4-12b) are then

found to be

(7-34) Qyn,1 ™ ﬁq IDE[JLIL Aprl(x,y)dx}f¢l(y)fvl(y)dy q;,l

8b L o L oo
- 173 YT L% Fu(y)le(y)fvl(y)dya +&) Fo F, £ dy }

qn
by vy
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b A b
(7-34) Q, = ooy DL, AP (x,y)dx)f, (V)f_ (y)dy q}
con't 1+n,2 2llk“% o “-b w, ¢1 vy ¢1

8b L ro L oo o
) ‘i'j-M:{J:j FCL Fw fvldy o+ f;’ Fd)l sz fvldy q¢1}

b b
Qn, 1420 " 2Hk2£{f;£[ﬁcpa d"]qul fvl dy @

2. b 2. b
+ L[S, Acpy ax)f, £ dy qF + SU[J, ACp, dx)f, £ dy qF
0 "-b e, N ¢y O e Ty vy Ty
Bb E- (] 2‘ a L]
- I (A Fd)l fvldy o+ [ F(b1 F¢1 fVl dy q¢l}

All remaining 0 terms in (4-12b) will be zero.
j4n, 1

For a given reduced frequency, computation of these generalized
forces involves program output for both oseillating and steady flow
conditions. Sectional generalized forces and pressure series coef-
ficients output by the Rowe progran are used, in the same manner
described above for steady chordwise loads, to compute (7-34). Integrals
for oscillating flow, of course, are complex. Nine complex spanwise
numerical integrations are needed for each k , whereas 126 would have
been required withouf the simplifyving approximations. Two real integra-
tions in Q1+n,1+2n involving steady pressures also appear in the

steady displacement solutionm.

B. Flutter Calculation Procedure and Results

Inclusion of subsonic three-dimensional (3-D) ailrloads eliminates
a serious flaw of the strip theory loads used to obtain all Chapter VI

results. This was the approximate spanwlse load distribution, which is
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most inaccurate near the tip. Leading-edge suctlon has been included
in the same manner as the Chapter V, Section D, analysis of 2-D flow.
An effect which was neglected in the strip theory case, that of the
x~component of the resuyltant pressure force normal to the deformed
chord (cf. Eqs. (5-18) to {(5~20) 4is now retained. It is accounted for
by the chordwise terms which are computaed with sectional peneralized
forces. The influence of induced drag upon botl: steady deformatioms
and flutter stability should now be implicitly included by the modeline
of chordwise loads. Two parameters which must be specified in addition
to those mentioned In Chapter IV, in ovrder to define a specific wing
are the aspect ratio (T;’i) and Mach number.

The Chapter IV stability calculation method has been modified to
accept the subsonic 3-D steady and unsteady airloads derived in Section
A. Since these airloads are now externally generated, iteration of the
reduced frequency to find neutrally damped eigenvalues is no longer
feasible. Generalized forces have to be computed beforehand, both for
steady flow and for oscillatory flow at preselected reduced frequencies.
Computation of steady displacements for a given angle of attack and
flight speed is accomplished as before, now based on Equations (7-31).
Then for each of the preselected reduced freguencies, the previously
caloulated generalized forces (7-32) and (7-34) are input, the cigen-
value determinant (4-19) is assembled, and complex eigenvalues are
determined. For each of these there are an associated speed and damping
as shown by (2-25) and (2-27). The speed and damping of each flutter
mode are then plotted for all %k , and a neutrally-damped speed U

F
is determined by graphical interpolation. The procedure is repeated
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with a newly estimated Ue : with care, Ue and UF can be matched
with sufficient accuracy after two such steps.

The expense in computer time to execuke the Rowe program and the
additional effort required to prepare the chordwise loads make it
desireable to use as few as possible %k wvalues. Fortunately, all U
vs. g i1nterpolation graphs proved to be quite smooth. Flutter speeds
accurate to three significant digits {sufficient) were reliably obtained.

The moderate-aspect-ratio wing whose stability boundary for 2-bD
airloads appears in Fig. 6-7 has been re-analyzed using 3-D incompres-
sible aerodynamic theory. Figure 7-1 shows the results, compared with
the 2-D flurter calcnlations, The curve marked "100% suction" was
computed with the complete system (4-12), (7-32), and (7-34) whereas
thar marked "0% suction" was found by repeating the analysis after

removal of all terms containing the singularity strength parameters

i

¢1 etc. in (7-34). This latter result thus represents the effects of
forces normal to the deflacted airfoll chord only in the dynamic equa-
tions. The coupling of fore-and-aft bending motions into flutter by
the leading edge suction forces 1ls therefore absent in the "0% suction"
case.

The 2-D stability boundary involves the aerocdynamic loads of
(4-18), which actually do not account for suction. The effect of model-
ing the suction force, as derived in Section C of Chapter V, is shown
by Figs. 6-35 and 6-36. These plots suggest that, if a stability
boundary had been determined with suction accounted for, the 2-D curve
in Fig. 7-1 would show less influence of steady deformation and would
not drop below U =7 . The solid, 3-D curve does, of course, account

for suction.
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Comparison between the 2-D and 3-D flutter speeds is also made
more difficult because they involve different steady aerodynamics. 1In
order to minimize differences of this kind, the steady tip deflection
was judged to be the best common measure of steady alrload effecrs.

Inspection of Fig. 7-1 affirms that the Influence of steady
deformations upon flutter is not just governed by elastic bending-torsica
coupling but is also sensitive to the manner in which the potential
aerodynamic loads are applied to the fore-and-aft degree of freedom,
Even though the chordwise force components represent tilting of a
relatively large, approximately vertical resultant force vector, they
are seen to have a significant stabilizing influence. This conclusion
follows from comparing the "100% suction" and "0% suction' curves. Any
analysis of this type will obviously be sensitive tc the wﬁy in which
chordwise forces are accounted for,

The influence of compressibility i1s next explored by repeating the
foregoing calculations with airloads computed for Mach numbers of .6
and .8 . Results are shown in Fig. 7-2, Strictly speaking, this
procedure involves an inconsistency, since Mach number is held fixed
while velocity is freely varied. The type of calculations required to
model properly a wing at high subsonic speeds would require iterative
matching of Mach number and speed UF for a given flight altitude.
This refinement is deemed to be excessively costly in both computer
time and effort. Nevertheless, the results of Fig. 7-2 provide inter-
esting qualitative information on Mach number effects.

As Ma is increased, the decrease in flutter speed with steady

deformation for the "0% suction" case becomes less pronounced. The



results for "100% suction" show less sensitivity to Mach number. In
either case, nc adverse effects due to compressibility upon flutter of
a lifting wing are revealed, other than those assoclated with a modest

decrease in U, with increasing Ma .

F

When extending this analysis to higher subsonic Mach numbers, it
must be remembered that the only aerodynamic loads being included are
those which arise from inviscid, first-order, small perturbation steady
and unsteady theory for planar 1lifting surfaces. Induced drag is present,
as discussed above, but all chordwise forces which arise from either
direct viscous shears or from modifications to the pressure distribution
due to the presence of a boundary layer are not modeled. Yet viscous
effects of this type become increasingly more pronounced as flight
speeds approach the transonic regime and/or as mean angle of attack is
increased.

The chordwise laods associated with direct viscous shear should not
contain a significant unsteady componecnt, at least at the lower reduced
frequencies encountered here. It is expected that they will produce a
steady drag force aligned with the airfoil section. By contrast, the
chordwise potential loads represent the horizontal component of a
relatively large resultant circulatory lift vector. Tilting of this
vector can introduce unsteady chordwise loads of conslderable magnitude.
Indeed their importance in aeroelastic stability is suggested by
comparison of the 100% and 0% suction curves in the figures.

Since viscous shear should cause a predominantly steady drag loading,
qualitative information regarding its effect on flutter can be inferred

from the strip theory studies of Chapter VI involving the drag parameter
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C. For example, no substantial alteration of the dependence of flutter
speed upon steady lift should be expected from including this additiomal
drag term. The effect of unsteady viscous contributions to aeroeiastic
stability has not been considered anywhere in this investigatlon. The
mere prediction of unsteady viscous chordwise loads is still regarded

as an open question for experimental and analytical research, especially
when turbulent boundary layers ate involved.

As a final case, the large-aspect-ratio example of Fig, 6-13 has
been reanalyzed. Aspect ratio is fixed at 20 and Mach number atr O.
Results are shown in Fig. 7-3. Interestingly, the zero-lift flutter
gspeeds for 2-D and 3-D flows are nearly the same; of course, strip
theory is expected to be more accurate for the larpger aspect ratio.

The difference between the 2-D and 3-D (with suvction) stability
boundaries is actually deceiving, since (as already mentioned) the 2-D
results do not contain the improved modeling of the suction force from
Chapter V. TFigures (6-37) and (6-38) suggest the stabillizing effect
which introducing suction would have upon the 2-D curve in Fig. 7-3.

The key observation here is that the same type of instability, involving
substantial participation of the fore-and-aft bending degree of freedom
observed for 2-D aerodynamic loads, is still observed after 3-D aexro-
dynamics are introduced. Also the inflgence of steady deformation upon
flutter speed remains appreciable., Removal of the unsteady suction
terms decreases Stability, much as was observed for R = 10 in Fig. 7-1.
Points on the stability boundary for o < .005 could not be found
reliably because of the extremely light damping in this region:

approximate curves are shown by dashed lines.
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In conclusion, the results found in this chapter seem to confirm
that the phenomena analyzed extensively in Chapter VI are still observed
when the strip theory airloads are veplaced by airloads from 3-D
aerodynamic theory. Furthermore, the role of chordwise forces due to
leading edge suction has been found to inerease the aeroelastic stability

of a wing undergoing steady deformation due to 1ift.
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i0. & 2-D AIRLOADS

C 3D AIRLOADS:

100% sucticn

9, - ——— (% suction

FIGURE 7-1 TFlutter Speeds as Influenced by Steady Deformation,

Moderate-Aspect-Ratio Example of Fig. 6-7 with AR = 10
and Ma =0
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e

O
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O

5. % w——— 100 % suction
— — = 0% suction
—
L L ) ]
0. . 2. 3. 4.

FIGURE 7-2 Flutter Speeds as Infiuenced by Steady Deformation at
Three Mach Numbers; Wing of Fig. 7-1
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Chapter VIII

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions are drawn from the variety of results

obtained in this 1nvestigatiomn.

1

2)

3

4)

The influence of steady drag on flutter speedé changes from favorable
to unfavorable as aspect ratio is increased. The frequency of the
second transverse bending mode decreases, tending toward the funda-
mental bending-torsion flutter frequency, as aspect ratioc is
increased.

The prediction of the influence of steady drag upon flutter is not
substantially altered when steady defcrmations due to 1ift are
considered. The major effect of steady drag is to reduce divergence
speed, especlally for large aspect ratios.

When a wing has such a large aspect ratio that its fundamental
fore-and-aft bending frequency is less than the frequency of bending-
torsion flutter at zero steady lift, an instability associated with
chordwise bending occars. The critical speeds are lower than the
zero-1ift flutter speaed when any steady lifting deformation is
present. This t&pe of flutter can disappear at small steady detflec-—
tions when realistic structural damping is introduced, but for
reasonably large displacements it can still occur.

Steady deformations decrease flutter speed and flutter frequency.
The effect is most pronounced when the fundamental fore—and-aft
bending frequency is near the zero-lift bending-torsion flutter

frequency.
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5) The aerocelastis phenomena predicted using incowpressible strip-
theorv airloads are also observed when three-dimensional, compres-—
sible subsonic ajrloads are emploved.

6) The inciusion of unsteady leading-edge suction forces moderates
the predicted decrease in flutter speed due to steadv lifting
detformations.

7) 1o subsonic compressible flow, with unsteady petential chordwise
torces, there ssem to be only slight adverse effects of Ha on

flutter when steady deformations are present.

One of the predictions of rhis study is that a high performance
sailplane undergoing a limit load factor pullouc from a dive could
encounter flutter or divergence at lower speeds than might he antici-
pated from a conventional aercelastic analvsis. The increased steady
drag which accompanies higher CL would reduce the divergence speed
considerably, while the deformation of the flexikle high-aspect-7acioe
wings would change the dvnamic aeroelastic «tability as well.

The present analysis could be refined still further. Ronlinear
gerodynamic effects deserve further actention. Higher mean angles cof
attack would lead to fncreased importance of the turbulent boundary
layer, culminating in separation (stall), which will alrer the stabiliz-
ing contribution found due to leading-edge suction in ateached flcw.

Vehicles intended to cperate at the higher subsonic or low tran-
sonic speeds (certain RPV's or missiles could still be designed with
the straight wings considered here) are expected ro encounter various

phenomena which could greatly affect the chordwise loads. Viscous
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ghear, boundary layer modification of the flow, and thickness effects
with the appearance of shocks will all modify the aeroelastilc behavior.
Finally, the transonic and superscnic flow regimes, where drag
loads are considerably larzer than at subcritical speeds, remain largely
uninvestigated. 1In these ranges different structural and aerodynamic

configuration3 are likely to be involved.
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Appendix A

THE ASSUMED MODES

1. Bending
The natural mode shapes and frequencies in bending of a uniform
beam of length &£ are found by seeking homogeneous simple harmonic

solutions of

Ewa"" +mw =0

Letting

the general solution is
= » p] e el
W—Al sin /;y+A2 coSs /;y+!.3 sinh /;y+A4 cosh/;y
where a ==

Application of the bending boundary conditions
W) = W'(0) = WLy =W"'(R) =0

results in a trancendental equation for the natural frequency eigenvalues

cosh — %
a

which are for vertical bending

1 EIx
(&-1) w, = nzni i i=1,2,3,...

i m
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The trancendental numbers Ni for 1 <1<5 are

=
]

0.596864162695

1
N, = 1.494175614274
(A-2) Ny = 2.500246946168
N, = 3.499989319849
N, = 4.500000461516

and the corresponding eignevectors yield the vertical bending natural

modes

sin Ni“ - sinh N7

A-73 = v - v
(4-3) fw cosh HNi + cos HNi (sinh HNiy sin HNiy)

4+ cosh HNi§ -~ cos HNiﬁ]

expressed in orthonormal form so that

1o
{) fw‘(y)dy =1
i
The modal property Bi in the steady squations (4~3) is related to

the modal integral

{3

(A-4) flfd SRS P L =-ii-
A ¥ N | cosh TN, + cos xlN 2

(sin vN, - sinh «N ]
1

Fore-and-aft bending natural modes fv are the same as in {(A-3),
i
however the natural frequencies are

reg 1 EIZ
(A-5) mvi =10 Ni =/ o= T mwi
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The fW are 1llustrated in Fig. A~1 for 1 <1 < 5.
b

2. Torsion

Natural mode shapes and frequencies in torsion are simply

(A-6) £, = gin I(j-%)F

¥

(a-7) W

1 /%1
¢j = M(j-%) 2 / =5

which result from the elementary Sturm-Liouville prcblem for torsion

of a uniform rod. These moades are not normalized since

12 e
A fq.)j(y)d,v—lg
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Appendix B

CALCULATION OF MODIFIED BESSEL FUNCTIONS

The modified Bessel functions KO(E) and Kl(g) appearing in
the expression (5-1) for the generallized Theodorsen function can be
computed by using the following ascending power series expansions,
drawn from Abramowitz and Stegun {(Ref. 26, Equations 9.6.10, 9.6.11,
and 9.6.13).

eyl

-\
Css) Eo FIT(V+i+1)

]

(B-1) IU(E)

(B-2) K (5) = - {fafhs) + v} ()

=2 242 2,3
t i v SR aenb ¥ v L

(B3  KGE) = 50D+ mEDHLE)
CNOE) T WG+ D) e+ 20} )
e T i 3 TG
where
v+ 1) =t
¥(l) = -y
€ w1
yo) = -y, + I3 y V> 2
j=1
Y = 0.5772156649... {(euler's constant)

No convergence difficulties with the power series expansions were

encountered over the range of s that occurred in this investigation.

237



Simple harmonic airloads involving the Theordorsen function of reduced
frequency C{k) were computed by the same procedure, simply by the

substitution 3 = 0 + ik .
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Appendix C

SOLUTION FOR NONLINEAR STEADY DISPLACEMENTS

With the vector of generalized disnlacements defined as

T
{c- q® = {g° +.-.,9° +9°%,9° ,q} ,..,q} }
- w1 q“n Vi Va ¢1 ¢n

the nonlinear equations (4-9) can be expressed,
(c-2) Fg) =0

where

}T

(c-3) F={F ,...F ,F ,...,F ,F, ,...,F
~ i n 1 vn dJ1 ¢n

Let an initial estimate qzo) be found by solving the linear steady
equations (4-20), then linearize 35 about qzo) by first-order Taylor

series,
(c-4)  F@@?) = Flap,y) + [T(qg,)) 16 - gz, y) + H.O.T.

The Jacobian matrix J contains partial derivatives of the F's with

respect to the q°'s evaluated at qu) { 1ts elements are shown in

Fig. C-1. Equation (C-4) can be used to sclve for (qf,, - q%.,) by
, (1) 2{0)

the linear approximation

_ o o -] - o =
(€-3)  Flagey) *+ Uiy 14y = 800y = °
and the first iteration solution is
(C-6)

G T Y 36 T
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‘This process is repeated untll satiafactory convergence is achieved,

with the general ith step given by

©n D) eien -8 ™~ 29

A+ = Qe T8 YA

In practice, wore than four or five iterations rarely were required,

for cases near static divergence speeds.
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w MPi MP1 n n
J, el = N %8+ (-1 e I I R, . q° q°
1,1 aq“i j bU i3 pU u=1 vel 1juv % b,
3F
w MP1 n
1 el = o2 (r-1) £ W, q
§,1+n aqvi BU yoy VIL %
-] -]
ng MPia n qvu n n qu
J e~ =~ (t-1) ——>—[Z H,,— -2 ¥ q? =] - 21
$i1#n 7 By M e € T e ) 13
3F
v MPi n
J sl = - % (r-1) I q°
pat T3 T TR ooy Vi3 8
3F
v MPi MPi n n
J = = TN 28, - (-1) =2 I I R, 3° q;
f4n,1+ u E)qvi 4 B0% °ij BUT o) oy bawe, %)
8Fv MPia n q;u n n q“’,v
J = —io = - (T—l) — [ b | -4+ 2 I IR q° —1 + 2al
jin, i+2n E)qui U u=1 injb u=1 v=1 viui ¢1J b 1j
(-] ]
BF¢ MPia n n qvu n qu
7., sl = (1-1) ¥ [-2 5 I —Heo - w2
1+2n, 40~ Ty B0 Nt S R S (S
9F
¢ M1
- - 2 - 2 p o —
420, 1420 E;i CIE (-2 " 7= - Wy
i
-] (-2 (<3 o
MPi n n qw n n qv qv
+ (1) —2 [ £ = H_ 7 5 R 2=
o7 Lo e Rvit v % ol ey V3L )
61;} = 1 (i=3)
0 (i#1)

(1<i<n), (1<3i<n

FIGURE C-1 Elements of the Jacobian Matrix
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0. ABSTRAACT (Continue on reverse alde ([ necssary and Identily by block numbor)
This investigation explores the effects of chordwise forces and deformations and sieady-
slate deformation due to lilt on the stalic and dynamic acroelastic stabiiity of a uniform
cantilever wing. Results of this analysis are believed 1o have practical applications for
high-performance sailplanes and certzin RPV's. The airfoil cross section is assumed
10 be symmetric and camber bending is neglected. Motions in vertical bending, fore-and-
aft bending, and torsion are considered. A differential equation model is developed,
which included the nonlinear elastic bending-torsion coupling that accompanies cven
moderate deflections. A linearized expansion in small lime~dependent deflections is madefs
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wnout a steady flight cendition. The siability deicrminant of the linearized system then
cuntains coeflicients that depend on steady displacements. Loads derived [rom two-
dimensional incompressible aerodynamic theory are used (o obtain the majority of the
results, but cases using three—dimensicnal subsonic compressible theory are alsc studied
The stability analysis is carried out in terms of the dynamically uncoupled natural modes
of vibration of the uniform cantilever o _Dynamic stability in the case of incompressible
strip-theory airloads is determined in o ways. One is the “V-g method" familiar to
aeroelasticians, When steady deformatidys are present this methad requires an iterative
matching of flutter speeds with estimated speed. The second approach involves determi-
nation of the complex eigenvalues of the aergelastic modes a1 any desired flight condition.
The aerodynamic loads are expressed in terms of the generalized Theodorsea function;
eigenvalues of the aeroelastic system are locayed with a gradient search technique.

The effcct of steady drag on flutier of nonlifting wings using incompressible sirip-theory
is studied and shown to correlate with previously known results. Next, the influence of
steady lifting deformaticns on [luller is invesligabed, and flutter modes are found that
involve fore-and-aft bending motions. The signififance of unsteady leading edge suction
‘orces, which are predicted by the two-dimensional} incompressible aerodynamic theory,
is then examined. Two idealized examples based upon existing sailplanes are analyzed.
Steady drag loads lower the {lutter speed for larger aspect ratios but increase it for
:aspect rotios less than a certain value. Divergence speed is more sensitive to steady
drag, and for very high aspect rotio wings it can fall below the bending-torsion {iutter
speed. Steady deformations due (o lift always decrease the [lutter speed by an amount
dependent upon the aspect ratio and the fore-and aft bending stiffness. Leading-edge
suction forces increase flutter speed. Three-dimensional steady and unsteady airlcads
are iriroduced into the V—g flutter analysis scheme, and for a Mach number of zero ihe
role of steady lifting defcrmations and unsteady leading~edge suction forces is more
accurately determined. The behavior predicied using sirip theory loads is again observed
and the suction forces are confirmed to contribute a significant stabilizing effect. Furthe)
calculations using high subsonic Mach numbers reveal only mild effects due to compressi-
bility (disregarding unsteady cordwise loads of viscous origin).
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